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Hydrodynamics of bacterial colonies: A model
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We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This
model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled
to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics
inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion
towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in nu-
merical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such
as the whirls and jets recently observed in wet colonieBadfillus subtilis The approach presented here could
be extended to different experimental situations and provides a general framework for the use of advection-
reaction-diffusion equations in modeling bacterial colonies.
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[. INTRODUCTION tence of respiratory waste products and chemoattractants
emitted by the bacteria, the formation of concentric rings and
The growth of bacterial colonies in the form of films or spots within the colony is also accounted f&@0—22. This
chains is an example of simple multicellular organizationapproach can be generalized to other types of bacterial trans-
found in nature[1]. Remarkably rich behaviors have been location, as discussed in RgR3] for swarmer cells. At a
observed in colonies of bacteria forced to develop on top omore microscopic level, fractal-like colony boundaries can
a gel (agay containing nutrients. Expansion and growth of be reproduced by a “communicating walkers” model, in
the colony is observed, during which cells translocate towhich ensembles of bacteria at a mesoscopic scale constitute
wards regions of fresh nutrients. Depending on the wetnesandom walkers which receive energy by consuming nutri-
of the growth medium and on the nutrient concentration, theents and use energy at a constant fad#. In such a model,
colony boundary may take fascinating shapes, which arevhich also captures the response of the colony to anisotropy
sometimes reminiscent of fractal structuf@s-6]. The phase [25], the boundary of the colony moves when it has been hit
diagrams established in Refigl,6—10, which classify the by enough walkers in the course of their random walk.
shape of the colony in terms of wetness and nutrient concen- Recent experiments described in REZ6] have shown
tration, show that the morphology of the colony is extremelythat, in wet conditions, strains &facillus subtilisgrowing on
sensitive to these two parameters. Patterns in the form ain agar plate may form eddies and jets of bactexe also
terraces, rings, and spots have also been observed inside b&ef.[4]). Such structures appear in the wetter regions of the
terial colonied11-14. The nature of these spatial structurescolony and have a size that is intermediate between that of a
depends on the growth medium and on the type of bacterigingle bacterium and that of the entire colony. In these ex-
used, which often secrete some chemoattractant. As stated periments, the growth medium is very wet, so that bacteria
Ref. [15], understanding the shape and dynamics of laboraswim and do not swarm, and nutrients are plentiful, at least
tory grown colonies has significant impact “in many realmsinitially. Moreover, the bacteria used in Rg26] do not pro-
of science, ranging from acquiring a deeper knowledge ofluce surfactarfi9]. As a consequence, the growth rate of the
prokaryotic cell biology to answering fundamental questionscolony size is much smaller than for surfactant-producing
of genetics, evolution and morphogenesis.” strains, as exemplified in the experiments of Mendelson and
Colony expansion is phenomenologically modeled inSalhi[9]. Three levels of organization are observed in the
terms of reaction-diffusion equations for nutrients and cellcolony: individual cell motion at a microscopic scale, whirls
density. These equations may involve cell multiplication andand jets at a mesoscopic scale, and a macroscopic superpat-
death, linear or nonlinear diffusion, and chemotactic retern of counter-rotating whirls. Some of the conclusions of
sponse to nutrients or to other chemicals secreted by thrRef.[26] are that whirls and jets are “produced by swim-
bacterig6,16—19. Such models typically reproduce the mo- ming in high cell density populations, not by classical
tion of a front corresponding to the boundary of the expandswarming,” that the motion of the colony boundary is influ-
ing colony. Depending on the model and on its parameterssnced by whirls and jets, and that “understanding the control
this front may become unstable and lead to the formation 0bf these complex events and their relationship to known as-
branched structurgs$,19]. By taking into account the pres- pects of bacterial swimming and taxis presents a new chal-
ence of motile and nonmotile bacteria as well as the exislenge to both microbiologists and physicists.” More recently,
intermittent whirls and jets formed by bacteria were also ob-
served in a quasi-two-dimensional bath Edcherichia coli
*Electronic address: lega@math.arizona.edu [27]. Even though it is not clear whether both experiments
"Electronic address: passot@obs-nice.fr were performed in the same range of bacterial density, the
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spontaneous formation of coherent structures in bacteridlehaviors are expected to appear in this case because the
colonies confined to an almost two-dimensional domain apédirection (angle in which a particle moves is given by the
pears to be quite genelf@8]. Since reaction-diffusion equa- average of the directions of motion of its nearest neighbors
tions alone cannot describe such phenomena, a different aplus some uniformly distributed noise. As a consequence, if
proach is required. the noise amplitude is fixed, there is a threshold value of the
The goal of this paper is to develop a hydrodynamicpartide density above which the average of the particle ve-
model suited for the description of dense colonies of bacteri#Cities over the whole particle ensemble is nonzero. Simi-
growing on the surface of an agar plate, as observed in refarly, if thg partlcle_ density is flxeq, there is a threshold.value
[26]. The experimental setup of R4R6] consists of a gel of the noise amplitude below which collective motion is ob-
the agar, in which nutrients are embedded, and which als§€ved- The hydrodynamic equation proposed by Toner and

contains a complex fluid, water with bacteria. A complete 'Y in Ref.[35] therefore has a Ginzburg-Landau component

model of this rather complicated system would therefore re;[hat describes the bifurcation of the averaged particle veloc-

quire a detailed study of two different physical systems: thdty field towards a nonzero vaIue._ It a[so cpntains a Navier-
agar and the mixture of water and bacteria. In this paper, wetokes component with nonclassical inertial terms. Th.e au-
focus on the latter, and only take into account basic propern0rs of Ref. [35] argue that such terms are permitted

ties of unsaturated porous media to describe the agar p|(,;1piecause the Galilean invariance is broken by the ensemble of

and its interaction with the fluid. Even so, the description ofParticles. _
the mixture of water and bacteria poses a challenge of its | € model we present here assumes neither the spontane-

own. Because of their size, of the order of a micron, bacteri@US formation of coherent structures, nor the breaking of the
are at the upper limit of particulate systems for which colloi- Salilean invariance. Following Dre88], we consider that a
dal interactions are importaf29]. They are also at the upper mlxtur? Cannot_ know Whether it is re_ferred to an |_nert|al
limit of particles that may exhibit Brownian motion in a rame.” In fact, if the density of bacteria and water is con-
fluid, since at ambient temperature and with velocity gradi-Sta”t and if t_)actenal_ collisions are neglecteq, the simplified
ents estimated from the data published in R2€], the Pe hydrodynamic equation we obtain is the Navier-Stokes equa-

clet number of micron-sized particles is of ordef3D]. The tion. In a quasi-two-dimensional setting, this equation has
point of view developed here is that hydrodynamic effectst€ Property of transfering energy from small to large scales

are dominant and are responsible for the whirls and jets ob-39:40, and we use this mechanism of inverse energy trans-
served in the experiment. fer to model the spontaneous formation of whirls and jets in

Hydrodynamic models involving bacteria have alreadythe colony. Our approach also provides a general framework

been discussed in the literature. A recent model by Beefor the use of advection-reaction-diffusion equations to
et al. [31] describing the swarming behavior S8&rratia lig- r_nodel bacterl_al colony expansion, since the continuity equa-
uefacienssuggests that colony expansion is directly relatediOns We obtain for bacteria and water are reaction-diffusion
to the spreading of a thin film made by a wetting agentequatlons with an advection term involving the water-

secreted by swarmers. The situation considered here is difacteria mixture averaged velocity field.
ferent, since the bacteria do not produce a surfactant and This paper is organized as follows: experimental results of

swim in a thin layer at the surface of the wet agar medium R€f-[26] are summarized in Sec. Il. Section IIl is devoted to

Models intended to describe pattern-forming instabilitiest'® Presentation of the hydrodynamic model. In Sec. IV,
elimination of the velocity field leads to a set of reaction-

such as bioconvectiorisee Refs.[32,33 and references ="' X - - -
diffusion equations with a chemotaxislike term, similar to

therein are only appropriate when bacteria are dilute in the ; : ;
fluid. Moreover, multiplication of bacteria is not taken into Keller and Segel's model for chemotactic organigi#, 17,

account in such models, since it is assumed that most bidut now valid for dense bacterial systems. These equations
convection patterns reach their steady states quickly enoug'® different from the models with nonlinear diffusion and
The motion of a single bacterium in a low Reynolds numberubricating fluid reviewed in Re{6] or Ref.[19] but are also

incompressible fluid is described by the Stokes equation witiP!Ie t0 reproduce branched colonies. Moreover, they have
no-slip boundary conditions on the flagella and vanishingN€ advantage of being based on the hydrodynamic model

velocity at infinity. Under these conditions, hydrodynamic Presented here. In Sec. V, we show numerical simulations of
interactions between bacteria become significant when thi1€S€ equations and of the full hydrodynamic model dis-
average separation between neighboring cells is smaller th&'SS€d in Sec. l1l. Section VI is a conclusion. Appendixes are
the largest physical dimension of each bacter[@4]. Since devotgd to an |Ilustrqt|on of a typical velocity field profile in
the average distance between neighboring bacteria in a den@e/€rtical cross section of the agar plate and to an explana-
colony growing on an agar plate is about one-third of thellon of how our model may be derived using a two-phase
diameter of a bacterium, considering the bacteria togethdfuid approach.
with the water in which they move as a single complex fluid
is a natural approximation. Il. EXPERIMENTAL RESULTS AND ORDERS

A hydrodynamic equation was proposed by Toner and Tu OF MAGNITUDE
[35] to describe the collective motion of self-propelled par-
ticles, which have a tendency to align their speed with that of Whirls and jets described in Refi26] appeared in large
their neighbors. Such a model was introduced by VicseKthat is of diameter greater than 50 rmoolonies ofBacillus
et al.in Ref.[36] and further studied in Ref37]. Collective  subtilisgrowing in 150-mm-diameter Petri dishes containing
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soft agarB. subtilisis a rodlike bacterium whose diameter is e
about 0.7um and whose length is-3 um. It was found in h11 Agar with bacteria and water
Ref. [26] that local organization of the colony involved an
alternation of whirls and jets: a clockwi$€W) whirl would H
disorganize itself into two counterpropagating jets, which
would then lead to the formation of a counterclockwise
(CCW) whirl. The process repeated itself in a seemingly
regular fashion. Whirls were organized in a superstructure, in
which neighboring whirls rotated in opposite directions. On
average, whirls and jets lived for only about 0.25 s and each
cycle (CW whirl—jets—CCW whirl—jets took about 1 s to FIG. 1. Schematic of a vertical cross section of the agar plate,
complete. The area of each whirl wasl000 um? and jets together with the corresponding horizontal velocity profile.

had a typical length of 9um and a width of 12um. The

width of each jet was therefore comparable to the radiu?)article. This gives a diffusion timerp=5 s [26]. For a
(=20 um) of whirls. The speed of cells within jets was about ¢onyective time, we can take the lifetime of whirls and jets,
100 #ms* and typical distances traveled by cells rangedn,; s, 7c=0.25 s. Their ratio gives a Reynolds number

between 22um and 30um. As the agar dried out, SWim- pased on the dynamics of whirls and jets,
ming ceased except in a few scattered whirls where the speed

was as low as 4ums . It was checked, however, that ad-

dition of water to the agar restored the swimming motion as wi_"D _ > _ &S
A - . . Re = 20> Re.

well as the characteristic sizes of whirls and jets described 7c 0.25

above.

These numbers should be compaféé] to the typical Even though R&’ may be an overestimate of the large-scale
size of a bacterium (3:m) and to typical swimming speeds: Reynolds number, the wide range of scales and associated
about ten times the cell length per secdad,42. For bac- Reynolds numbers that we have just discussed suggests that
teria swimming in water (of kinematic viscosity »* inertial effects may have to be taken into account to ad-
~10"5 m?s ™), and for a typical length equal to the length €duately model the experiments [@f6].

of a bacterium, we find a “small-scale” Reynolds number for ~ Coherent structures were observed in the o(ded wet-
bacterial swimming, ter) regions of growing colonies. The speed at which the

colony boundary moved was much smaller than the bacterial
velocity measured in whirls and jets, which indicates that at
vL (3010 ) (3x10°°) 4 least two very different time scales are involved in this prob-
oW 10-6 =10""<1. lem. In what follows, we present a model in which colony
expansion is described by reaction-diffusion equations with

In general, hydrodynamics involving bacteria is thus consid-"’.‘dvecuon’ coupled to an equa.t|on'for an averaged vglocﬂy
ered to take place at small Reynolds numbers. The situatiofic'd- The co_lony boundary, Wh'Ch_'s de_flned as a region of
is slightly different in the experiments described in Hgg], ~ Steep bacterial concentration gradient, is modeled by a front
since we are clearly faced with a turbulent regime Wheresolutlon to t.he a(_:ivectlon—reactlon—dlffusmn equations. The
many spatial and temporal scales coexist. In this context, theP€€ed at which this front moves should be small compared to
Reynolds number usually varies according to the scale e magnitude of hydrodynamic motions within the colony.
which it is defined. For instance, if we use experimentally

measured bacterial speed values and take as a characteristic ll. HYDRODYNAMIC MODEL

length the typical distance traveled by bacteria, we find a
Reynolds number

Re’

In this section, we write down hydrodynamic equations
for a fluid that consists of densely packed bacteria and water.
To build this model, we make the following general hypoth-

(100X 10 6)(25x 10 ) eses, which are consistent with experimental conditions.
ReP= ¢ =2.5x10"3,

A. General setting

which is one order of magnitude larger than°RBut there Figure 1 is a schematic of a vertical cross section of the
are also large-scale structures observed in the experiments gmowth medium, together with the corresponding horizontal
which “changes in patterns appear to be coordinated overVelocity profile. As illustrated in this figure, we assume that
thousands of micronfg26]. With a characteristic length of a the bacteria swim negand mainly ak the surface of a po-
thousand microns, the Reynolds number is of order 1. Anfrous medium, agar, which contains water. This is consistent
other approach is to try to estimate the diffusion time scalewith experimental observationi§,26]. A simple application

by considering the time it takes for whirls and jets to reachof Brinkman’s equations for porous medi3] shows that in
their characteristic sizes when water is added to a dry colonthe presence of a shear flow near the surface, the vertical
(we assume that diffusion of water is fast compared to thevelocity profile has a characteristic length that is proportional
rate at which strain is transmitted from fluid particle to fluid to the square root of the permeabilkyf the medium. More
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precisely, for a steady flow and in the absence of inertial B. Continuity equation for nutrients
terms, the velocity fiela"V of the fluid in the porous medium

e As food is consumed by bacteria, fresh nutrients diffuse
satisfies

through the agar plate. We assume that, as far as nutrients are
concerned, the agar is a homogeneous isotropic metiAsn.

a consequence, diffusion of nutrients in the plate is described
by Fick’s law with a scalar diffusion coefficie®S. Since

the region of the agar plate where the bacteria move is thin
compared to the horizontal extent of the plate, it is reason-
where u is the dynamic viscosity of the fluidy* is its  able to assume that vertical diffusion of nutrients in this re-
effective viscosity, andk is the permeability of the porous gion is fast and that the concentration of nutrients is there-
medium. A divergence-free solutian’V(z) of this equation fore independent o in the top layer of thickness. We also
W|th boundary Conditiomw(o):voi at the Surface iS given aSSUme that the amou-nt Of nutrients at eaCh. pOint in the tOp
by layer is directly proportional to the concentration of nutrients
in the agar plate below. In other words, we consider that
<H<LS, whereLS is the nutrients diffusion length in the
agar plate. Finally, we suppose that hydrodynamic motions
of nutrients are impeded by the agar matrix and are therefore
neglected. Thus, if we denote I$(x,y,z,t) the concentra-
tion of nutrients in the system$ satisfies the following
reaction-diffusion equation:

0=—-Vp+u*VipW- %vw, )

W C -
v"(z)= voexp(az)——z[l—exp(az)] X,
a

2_ M S
a= s =0 —=Rs+ DSV, )

Here x is a unit vector in the horizontal direction and the WhereRgs describes nutrient consumption by the bacteria and

constantC is related to the horizontal pressure gradient, asD°V>S describes the diffusion din the substrate. In Secs.
IV and V, we assumés=—koNS or Rg= —koN(1+S)?,

h WhereN (defined below is the mass of bacteria per unit
volume.

sumed uniform in the vertical direction, Wp=C,u*)A(. At
lowest ordef44], u* = and the typical penetration lengt
is thus of orderk. As discussed in Ref44], the actual
characteristic length depends of the geometry of the porous

medium and may be as low a,&/4 If the horizontal pl’svs- C. Hydrodynamics of bacteria and water
sure gradient is small comparedug, the expression fow o . . .
showg that motion takes glace ir? a thin [I)ayer of thickness We now turn to the description of fluid motions in the top

_ : : part of the agar plate. We consider the mixture of bacteria
Egmgér\z/i%)len'g) a:hgii::r;?c; p(gr;hier: ?r?:raglr:rtjz tﬁler:g‘eolfe and water as a very dense and viscous fluid, whose dynamics

much smaller than the thicknebiof the agar plate. is in first approximation given by the Navier-Stokes equa-
L . S ion. We denote by the mass of water and By the mass of
In the situation of interest here, no shear flow is impose

o acteria per unit volume. We also define the “wetness” co-
at the surface and stress-free boundary conditions should b(?. : :
: e o . . 7 ‘efficient of the medium by
used. This more realistic setup is discussed in Appendix A,
where it is shown that if the pressure gradient is nonzero in a
region of thicknes$ near the surface, the vertical velocity o=WI(N+W),
profile will be fairly large up to a depth of ordérand then

decay exponentially with a penetration length of side which measures the mass of water relative to the total mass

The existence of this finite, but small, penetration length jus¢ pacteria and water. A dry medium corresponds to small
tifies the fact that most of the motion is Quasi-two- 4,65 of 5 and a medium with no bacteria gives=1. The

dimensional. In practice, experiments on agar plates abo%‘xperiments described in Ref26] where bacteria are
10-12 mm deep reveal that cells grow abouy2@ into the  yensely nacked correspond to intermediate values of
agar. For thin agar slab$i=3-4 mm), the cell penetration

length is 8—10um.

Our hydrodynamic model consists of a momentum con-
servation equation for the velocity field of the bacteria-water The continuity equations foN is a reaction-diffusion
mixture, coupled to three continuity equations for the con-equation of the form
centration of water, bacteria, and nutrients in the top layer of
the agar. In what follows, we first write these equations in
three dimensions and then reduce them to a two-dimensionalThis condition can, of course, be relaxed. For instance, one could
approximation by averaging over the thin vertical layer ofenvision including randomness in the flux of nutrients inside the
thicknessh in which fluid motions take place. agar.

1. Continuity equations for water and bacteria
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Jv

N N
— +V-(Nv)=Ry—V-j", Pt

p +p(v-V)v=V -T+F, (5)
where Ry describes bacterial growth due to nutrient con-wherep=N+W, V. T is a stress tensor ardrepresents the
sumption andv is the velocity field of the water-bacteria sum of external forces exerted on a fluid particle. In what
mixture. The diffusion term comes from the fact that thefollows, we consider that the bacteria-water mixture behaves
velocity field on the left-hand side of this equation is differ- as a Newtonian fluid. The numerical simulations of Sec. V B
ent from the velocity field of the bacteria. In other words, theshow that many qualitative aspects of bacterial colony dy-
flux jN is proportional to the velocity of bacteria relative to hamics can be obtained within this simple approximation.
the mixture. If we make the hypothesis that Fick's law is Since the goal of this paper is to show how reaction-diffusion
valid, we get equations can be combined with hydrodynamics to describe
the evolution of bacterial colony shapes as well as complex
iN= —DMVN bacterial dynamics within a colony, including nonlinear ef-
’ fects such as viscoelasticity is beyond the scope of this work.

and if we consideDN to be a tensor which may depend on e therefore assume that

the bacteria(N) and nutrien{S) concentrations as well as on
the amount of watefW) present in the mixture, we obtain V- T=—Vp+uV?0+AV(V.v),

where u is the dynamic viscosity of the mixture andis a
ﬁ"'V'(NU): Ry+V-[DV(N,W,S)VN]. 3) second viscosity. We expect the mixture of bacteria and wa-

at ter to behave as an almost incompressible fluid, so the last
o ) ) term in the above equation will remain small. The fofee
A similar equation can be written fa and reads contains a friction ternfF¢= — a v due to the interaction be-

tween the fluid and the agar matrix, bulk forces such as grav-
IW . ity, and a “bacterial activity” termF that represents subgrid
W+V-(Wv)= Rw(N,W,9)+ V- [DYW)VW]-V .}V, scale dynamics due to flagella activity. We consider that be-
cause bacteria are living organisms, their consumption of
whereR,, represents water evaporatfand;j is the flux of food leads to a source term in the hydrodynamic equation
water relative to the water-bacteria mixture. The term(see_ also Ref.28]), which we model as a small-scale random
V.(D"VW) describes dispersiof45] in the porous me- [OT¢iNg Fq.
dium. Dispersion(or capillary dispersivity of a fluid in a
porous medium takes place when the latter is not saturated
by the fluid [46]; since water concentration may vary  The pressure in the expression foV - T is the sum of
throughout the agar plate, this effect should be taken intéhe water and bacterial pressugg¥ andpN. Whereagp" is
account in our model. We will assume dispersion to be isothe hydrodynamic pressure for an incompressible fluid, the
tropic and independent of the water velocity field. Note thatpressurep™ needs to be related to the bacterial density
bacteria are too big to move by capillarity, so dispersion isthrough an equation of state. This implies tpdtis locally
not included in the equation foM. Since the velocity field of defined, whereap"’ is a nonlocal function of the water ve-
the water-bacteria mixture is a mass-weighted average of thecity field v", such thatv -vW=0. It is therefore natural to
velocity fields for the water and the bacteria, the flliis  decompose the velocity field into a component® driven
opposite tgN and the equation fow therefore reads by bacterial collisions and a hydrodynamic componefit
which remains divergence free. This decomposition does not
necessarily coincide with the separationwofinto its com-

3. Pressure terms

IW

— 4+ V- (Wov)=Ry(N,W,S)+ V- [DY(W)VW] pressible and solenoidal components, since may also

Jt have a divergence-free part. We will write an evolution equa-
—V.[DN(N,W,S)VN]. (4) ftion for v<, which is driven by local variations gi™ (more

precisely by local variations giy defined belowand deter-
Further details can be found in Appendix B, where thesemine p'=p"“+pN—pY by imposing thatV-»" remains
equations are obtained through a two-phase fluid descriptioaqual to zero. This procedure will be implemented in Sec.

of the water-bacteria mixture. Il E in the case of a two-dimensional reduction of our model
for a Newtonian fluid.
2. Momentum conservation equation We now discuss the physical origin of the compressible

gart of the bacterial velocity field". One should imagine a
fluid made only of bacteria. In such a fluid, the pressités
a function of the density\N and of the temperatur€. The
virial expansion forp" is of the form[47]

The equation for the conservation of linear momentum o
the mixture is, at lowest order, the Navier-Stokes equation

2Consumption of water by the bacteria could also be included in
Ry andRy. pN=KT[N+B,(T)N*+O(N%], (6)
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wherek is Boltzmann’s constant anB,(T) is the second ate boundary conditions and expressions Torthese equa-
virial coefficient. For most gases and compressible liquidstions describe bacterial dynamics in regions of nonuniform
the pressure is typically linear in the density. We expect theyetness.
pressure of a fluid of dead bacteria to be described by such a

linear equation. The quadratic term in E®) is important

when binary collisions cannot be neglected. It is observed

that live bacteria undergo many such binary collisions, which ~ Given the small thickness of the layer in which fluid mo-
suggests that the effective temperature of a collection of liviion takes placésee Fig. 1, it is appropriate to reduce the
ing cells is higher than if they were dead. This is supportedhree-dimensional modél) to a two-dimensional one. We
by the results of Wu and Libchabf27], who measured the already mentioned that it is reasonable to assumevthand
effective temperature of a “bacterial bath” &. coliin a  Sdo not depend on the vertical coordinate. We also consider
soap film, and found a temperature of the order of a hundrethat the vertical variations dfl in the thin layer of thickness
times the room temperature. In what follows, we consideih are small. The velocity fielé# however varies strongly in
that the linear term inN is at the origin of a quasi- the vertical direction, as discussed in Sec. Il A. At the top
incompressible behavior of the bacterial fluid and is theresurface it is natural to assume stress-free boundary condi-
fore separated from the corrections proportionalNtd In  tions for the velocity, while at the bottom of the agar plate
other words, we write we should enforce a no-slip boundary condition. From a
practical point of view the depth at which the latter boundary
condition is enforced is irrelevant as long as it is larger than
a few multiples ofh. One may expand the velocity fieldon

a Galerkin basis consisting of vertical profile$z) satisfy-

: ! ., ing the appropriate boundary conditions, a$x,y,z,t

th_e pressure_terrch thereff)re gives rlse” to a force \_Nh'Ch z%iui(x,y,rt))pfi(g). Projecting tze momentum eﬁugtion)s on
drives bacteria away from “overcrowded” regions. This pro- s hasis leads to two-dimensional equations for the velocity
cess is faster than bacterial diffusigsee Eq.(3)], which  oomn6nents;(x,y,t). Atwo-dimensional reduction in terms
describes individual random motion. Moreover, it only takesq¢ o single horizontal velocity field is possible if a decompo-

pLace V\_/hen bactet:ia arﬁ alive aln(:]I close to each other._lt i§ition of the formu(x,y,z,t)=f(2)u(x,y,t) is a valid ap-
shown in Sec. IV that when coupled to nutrient COnsumpt'onproximation. It is then important to find the most appropriate
ofile f(z). The calculation off(z) is illustrated in Appen-

this process has, at least for short times, an effect analogo
ix A in a simple case. We also assume that the vertical

to classical chemotaxis. More precisely, bacteria tend t
omponent of the velocity field is negligible in the top layer.

move towards fresh nutrients. The existence of such a phec—
nomenon is particularly interesting here since it seems d'mMicroscope observations of the colony indeed show that bac-
Yeria stay in the plane of focus for a long time, indicating

cult to envision how classical chemotaxis can explain colon
expalnsmn dtovr\:ardifresh_ nutrients \|2/h§n the dlatter Tre In larggery jittle vertical displacement. By substituting this decom-
Supply and when act(ra‘ng a:je packe mdal enze ayer. position ansatz into Eqg7) written for a Newtonian fluid
To summarize, our hydrodynamic model reads and by integrating in the vertical direction over the depth
of the layer where most of the activity takes place, we obtain

D. Two-dimensional reduction

pN=ph+pY, where pY=y(S,N,W)N2,

It is reasonable to assume thatS,0W)>0. At order N2,

3S
i Rs(N,W,S)+DSV?2S,

S
—r=Rst DSVZS,

dW
7+V~(Wv):RW(N,W,S)+V-[DW(W)VW

IW
— +Vy- (Wo)=Ry+ V- (DVYV,W-DNV,N),

—DN(N,W,S)VN]T, at
oN oN — N
— TV (No)=Ry(N,W,S)+V-[DY(N,W,S)VN], i T Vn (No)=Ry+ V- (DYVN),
a—v+(v'V)v= ! [V-T+F«(N,W,v)+F w o — 1 — — _
at N+W sUn T e - Heo- Vo= [ = Vip+ uVip +AV,(Vi-v)

whereF, represents external forces and where we made ex- _
plicit the dependence oRs, Ry, Ry, DN, DV, Fg= wherev(x,y,t)=_(f>u(x,y,t) is the vertically averaged hori-
—a(N,W)v, andFg on N, W, S andwv. For clarity, these zontal velocity,p=(p), Vy, is the gradient in the horizontal
dependences will be implicit in what follows. With appropri- direction,
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(%) (d?f/dZ?) =0) and close tw". The definition ofp' ensures that these
(=2 "Tau ' conditions are satisfied. The equation &t can be rewritten
(f) (f)
as
1 fo ) H |
= z)dz|, v v 1 1
0 h( 99 7=—(U~V)v—Tp+(;—p—>(Dvc+DvH)
m
and g is any function ofz. Vertical averaging is a standard 1 =
procedure for thin films, usually described by linear equa- + —DvH - 2(vc+vH)+ @vc+ —
tions, and for shallow water models, for which vertical pro- Pm p Pm

files are constant. In the situation considered here, nonlinear

effects are not negligible and as a consequence, the nonline&ihe conditionV-v"=0 leads to an equation fg', which
term is renormalized by the coefficiefit The latter depends may be difficult to solve, especially if the boundary condi-
on the vertical profile of the velocity field and on the depthtions are not periodip48]. Here, since» vanishes outside the
over which averaging is performed. In Appendix A, we showcolony, one can use periodic boundary conditions with a box
that the profile given by Brinkman’s equations in the pres-whose size is larger than that of the colony. As a conse-
ence of a pressure gradient supported near the top layer @gience, the above equation may be replaced by

such thatf=1 as long as the averaging is performed over a

distance comparable to the depth over which the pressure H 1
gradient is supported. In what follows, will therefore be D P (V)| -~ —|Dv+—Do"
taken equal to 1, the bars will be dropped, and all gradients ot Pm Pm
will implicitly be horizontal gradients.
( 7 7/m) My F
—|l=-———]v——v"+—
E. Separation between the expansion-driven and hydrodynamic P Pm Pm P
components of the flow
The momentum equation in systg) reads voyov m P Pm
adv 1 +E +iDvH—ﬁvH,
E+(v'V)v=;[—Vp+Dv—nv+F], 9 Pl Pm Pm

where p=pW+p", Dv=uVZ+A\V(V-v), and F=F, WherePuv is the projection ob on its solenoidal part. With
+Fg4. As discussed in Sec. Ill C 3, we now decompose thePeriodic boundary conditions? is uniquely defined byPv
velocity field v into a componenwv® driven by bacterial =Y Xs, Wherev =V Xwvg+VV. Moreover, this projection

collisions and a hydrodynamic componarit, which satis-  ¢an easily be performed in Fourier space. In the above equa-
fies V-u"=0. The evolution equation fopC=p—p" is  tions, we used the fact th@Dp"'=DPv"=Du", sincev"

defined as is solenoidal. Initial conditions fov™ are such thavt=0
and sinceV-v" is conserved by the above equatiart’
remains solenoidal. The dynamic equationderv°+ v is

v 1 1 Nm
——=—-VpN+ —Dp°- —pC, (10 then
at p Pl o Pm
where 7, andp,, are typical(constank values ofy andp in v v 1 1 7 Tm F
the system. This equation is linearuf¥, which allows us to St P (- Vot o pm Dv -~ o pm v+ P
obtain a single equation fas, Eq. (11), as shown below.
i i H 1 1
Substracting Eq10) from Eq.(9), the equation for "™ reads B —Vp§+ = Po— @v. (11)
p Pm Pm
o™ 1 ¢ mme 1 |
- - (e Vju- p—Dv +p—v + ;[—Vp With F=0, the velocity fieldv™ is expected to remain small
m m as long asv® and Dv® are small. Our full hydrodynamic
+Dv— nv+F]. model then reads
The pressur@'=p— p2‘= pW+ pg is obtained from the con-
dition V-vH=0 for all times. The definitions 0§ and p' IS _ Sp2
) . N . - . =Rg+D>V<S,
satisfy the following criteria: when bacterial collisions domi- at

nate the dynamicé.e., if Vpg‘aﬁo and if the forcing is neg-
ligible), the velocity field is mostly compressible and should W
be close tov®; when hydrodynamic motions take plaae _ Wi N
’ : S ’ —+V-(Wv)=Ry+V-(D"VW)-V-(D"VN),
should be mostly incompressiblsincev=v" and V-v" ot TV (Wo)=Ry+ V- (DTVW)=V-(DTVN)
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N N consumption by bacteria. This system is in closed form if
—i TV (No)=Ry+V-(DTVN), is a function ofN, W, andS It indicates that, as bacteria are
advected at the mean velocity their mass changes by dif-
fusion and by growth due to nutrient consumption; nutrients

&—U—P (v Vo] = _) _(2_ ) L F diffuse in the substrate and are consumed by bacteria. Note
at v v m v p m v that Eq.(3) was written with the assumption that\ van-
ishes whenN=0, which is necessary if one wantg=0 to
B EVpNJF@_ ﬁv (12) be a solution of Eqs(13).
p ¢ Pm  Pm We now obtain an expression forof the form y(S)VS

) o . as an illustration of the role of the terryN? in the expres-
for a Newtonian fluid, i.e., withDv=xV?% +\V(V-v).  sjon for the bacterial pressup'. We first assume that nu-
The forceF is given byF=F.+F,. Again, Fe corresponds  trient dynamics is dominated by the reaction teRy, i.e.,
to changes in linear momentum due to external forcesgnd neglect diffusion in the continuity equation f& With R
describes changes in linear momentum due to bacterial ac- —koNf(S), where, for instance,(S)=S as in Ref[17] or
tivity. _ . _ . f(S)=(1+9)? as in Ref.[49], and in the absence of diffu-

The rest of this paper is devoted to a discussion of somgjon[17), Eq. (2) reads
basic properties of the hydrodynamic modg®). In Sec. 1V,
we investigate the role of the nonlinear term in the equation 1 9G(S)
for the bacterial pressug and show that when this term is N=— —
dominant, collective motion of the colony towards fresh nu- ko ot

trients is expected. In this case, Eq$2) have a singular Dropping all but the expansion term on the right-hand side of

limit in the form of a set of advection-reaction-diffusion Eq. (9) lecting th ? i q . i
equations, the behavior of which is then illustrated in the. d. (3), neégiecting the noniinéar terms and assuming tha
onstant, we obtain

numerical simulations of Sec. V. The advection term in thesé® & ©
equations is proportional to the gradientsSfand therefore

leads to collective behaviors similar to classical chemotaxis. v o

The role of water in these equations is also analyzed. At the por = YVINI)=—2yNVN,

end of Sec. V, we present simulations of the complete hydro-

dynamic model12) and show that coherent structures in thei.e.,

form of whirls and jets are obtained when the small-scale

forcing Fy is finite. v N N ( 1 aG(S)) 2y N gVG(S)

E:_Z’YFVNZZ’}/;V —k—opT,

ds
,  Where G(S):ff(_S)'

kot

IV. EXPANSION-DRIVEN DYNAMICS

which, after integrating over timéassuming that temporal
derivatives ofN/p are negligiblg, gives

A. Chemotacticlike behavior

In 1971, Keller and Seg€]16,17] proposed a simple
model for the chemotactic behavior of motile bacteria swim- 29N VS
ming in a fluid in the presence of a gradient of nutrients. v:_y__
Conservation of bacteria and nutrients was described in ko p £(S)
terms of two advection-diffusion equations, where the advec-
tion term in the equation forN was of the form Where
V- [Nx(S)VS]. The coefficienty(S) was called “chemot-
actic coefficient.” A similar model may be recovered from 0% 1
our general hydrodynamic equations if we eliminate the ve- X(N'W'S):Zk_o ; @
locity field v from Egs.(12). We indeed have

=x(N,W,S)VS=pchem (14)

The expressions d®g and y(N,W,S) are therefore related to
S each other through the expansion terpNg) in the momen-
—f ~Rst DSV?s, tum equation9). If N/p=1 andf(S)=S, we obtain a term
similar to Keller and Segel'$17] chemotactic coefficient
x(S)=2(v/ko) (1/S). With f(S)=(1+S)?, we obtainy(S)
=2(y/ko)[1/(1+S)?], which is also observed in chemot-

oW W N
- TV (Wo)=Ry+V-(DTVW)—V-(DTVN), axis experiment$50].

It is important to realize that the chemotactic limit we
N have just discussed may not be regula., that the solution
_ to the hydrodynamic equation with small inertial, pressure,
E+V'(Nv)_RN+V'(DNVN)' (13 and diffusive terms may not be a small perturbation of the
solution of the hydrodynamic equation with these terms set
where,Ry models bacterial growth due to nutrient consump-to zerg. In particular, the velocity field = y(N,W,S)VS
tion, Ry accounts for water loss, ariRs describes nutrient breaks the approximation thatshould be almost solenoidal.
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I )
g, £

FIG. 2. Sketch of the profiles dff andSin a direction perpen-
dicular to the colony boundary.

Moreover, the assumption thal/p is constant in time,
which was made to obtain a simple expressionfarill not

be preserved by these equations, unMss small. In Sec.
V B 1, we provide a numerical comparison of the full hydro-

dynamic model with the advection-reaction-diffusion equa-

tions given by Eqgs(13) and (14). We show that the limit

discussed here is indeed singular but that the advection-

reaction-diffusion model gives qualitatively good results,
even at large times. Equatiori43) and (14) represent an

advection-reaction-diffusion model for the growth of bacte-
rial colonies. Together with bacterial and nutrient concentra
tions, this model involves a third variable, water, which play

a role similar to the wetting agents or lubricants produced b))N:f(gZ)' N

some bacterial strain,6,10. This is illustrated in the fol-
lowing section, where some properties\Wfare discussed.

B. Bacteria-water interaction

Let us consider a colony with a straight boundary, moving

at a uniform speed. If we denote byx the coordinate in the
direction transverse to the boundary and if we place our
selves in the frame moving at speedthe equation folwW
IW W (W) d W N

becomes
at Ca§+a—§:RW+ﬁ_§(D ) (D 0_5)

whereé=x—ct. The last term on the right-hand side of this
equation is a flux in the direction of the gradientsNyfthat

al
43

d
9€

PHYSICAL REVIEW E67, 031906 (2003

FIG. 3. Numerical solution of Eqg13) and(14) att=80. The
parameters ar®N=0.05(1+ o)NS, whereo is a random number
with a triangular distribution of suppoft—1,1], Rs=—NS, Ry
=NS, Ry=0, ko=1, y=0.01, DS=0.1, andDW=0.005. Left:
profiles ofN, S, andW as functions of position, along a horizontal
half-line going through the middle of the colony. Right: gray-scale
picture of N as a function of space.

N(¢) S
W(&)+N(&) f(S(£))

is proportional toN, we can consider that(¢,) =0, if &, is
chosen far enough from the front soluti¢see Fig. 2 By

2
v(f)=k—07

gchoosing §; in a similar way, we can neglectV,(¢,),

f(€1), andNg(£,), so that

d ré
=5 f W(£)dé=Cc[W(£;) ~W(£D) ]+ W(Eo(£y).
&

Moreover,v(&,)>0. If we start from a situation wheW is
homogeneous, the@ is positive due to a flux of water
through the linef=&;. As a consequence, we exp&e(é;)
to become less thaw(¢,), which also increases the amount
of water present near the front of the colony. This mecha-
nism can saturate either by including evaporation into the
model(i.e., by settingRyy= — AW where\ >0), or if one of
the terms neglected above becomes large. Also note that for
v(&1) to be significantly large, one need&(¢,) finite,
which implies that the diffusion length of the nutrients is
larger than that oN andW.

This argument indicates that if the above conditions hold,

is, towards the inside of the colony. One can understand thigsne expect§V to be relatively large near the boundary of the
at a microscopic level: bacteria going down the gradients otolony. From a physical point of view, bacteria moving to-
N are replaced by water as they move. wards fresh nutrients drag the water along so that water is
Let us assume thadtl and S have profiles as sketched in depleted inside the colony. This effect is counteracted by the
Fig. 2, and thaRy=0. Let¢; and&, be the coordinates in  diffusion term in the equation foV. From a biological point
the moving frame of two points on each side of the front andof view, an increased amount of water will help bacteria
let us integrate the above equation betwé&grand &,. We  swim and will therefore favor colony expansion. From a
obtain modeling point of viewW plays a role similar to the lubri-
cant[6,10] or wetting agen{4] secreted by some bacterial
strains to sustain bacterial motion. Figure 3 shows a solution
to Egs.(13) at timet=280. The shape of the colony can be
seen from the gray-scale picture ldfas a function of space,
shown on the right. On the left side of the figure, the profiles
of N, S, andW are plotted along a horizontal half-line going
through the middle of the colony. In this run, the maximum
of W increases as a function of time until the gradientSof
behind the front become too small. Note that the gradients of
W are not small behind the front, which also provides a
mechanism to reduce the value @f Experimental observa-

d (é
QEaL W(§)dé=c[W(&) —W(E1) ]+ W(E)v(€1)
—W(fz)v(§2)+[DW(§2)W§(§2)—DW(§1)W§(§1)]
—[DN(&)Ng(£,) —DN(ENg(£1)],
where DMY(£)=DNW(N(£),W(£),S(£)) and W, and N

stand for the derivatives with respect §oof W andN, re-
spectively. Since the velocity
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tions confirm that the region just behind the colony boundarysimulations were performed on a random lattice, and it turns
is much wetter than the agar in front of it. out that randomness is essential in his model. We have in-
deed checked that by refining the mesh size, the instability
giving rise to fine structures onragular lattice disappears;
this was also noticed by Mimuret al. [19]. Kawasakiet al.

We start this section with numerical simulations of the[61] proposed to use a stochastic nonlinear diffusion coeffi-
advection-reaction-diffusion equations introduced in Sec. Ivcient in the equation foN to account for agar inhomogene-
We then turn to the full two-dimensional hydrodynamic sys-ity- In this case, dendriticlike colony shapes can be repro-
tem written for a Newtonian fluid and illustrate the chemot-duced, even in the absence of the bacterial depletion term
actic and hydrodynamic limits of this model. The simulationsintroduced by Kitsunezaki or Goldingt al. More recently,
shown below illustrate a few properties of E¢s2) and(13) ~ Mimura et al. [19] proposed a model that involves a piece-
but are by no means the result of a complete exploration ofVise continuous death term and(onstochasticnonlinear
these models. Such a discussion is beyond the Scope of théeceWise Continuous diﬁusion CoefﬁCient in the equation for
paper and will be published separately. N. This model captures a variety_ of colony shapes yvhen its

Numerical integration is performed in a box of sizer8 Parameters are varied. As mentioned before, Goleingl.
with periodic boundary conditions, using a Fourier pseu 6] introduced a model with lubricant, which can also repro-
dospectral method. For the reaction-diffusion model, lineafluce most of the colony shapes observed in the experiments.
terms are integrated exactly and nonlinear terms are intel0 our knowledge, no rigorous analysis of the nature of the
grated with an Adams-Bashforth scheme. For the full hydroinstability leading to branched colony shapes in these models
dynamic model, the time stepping is based on a Crankbas been performed, except in the simplest d&. It
Nicholson scheme for the linear part of the viscous angvould be extremely interesting to determine the exact role
diffusion terms and on an Adams-Bashforth scheme for th@layed by the reaction and diffusion terms in the develop-
nonlinear terms. The use of this scheme is preferred over @ent of branched structures for more complex models, in
low-storage third-order Runge-Kutta scheme because for thearticular, in the presence of noise. We now present the re-
latter the time steps required to keep numerical dissipatiogults of a few numerical simulations of E¢d.3) with reac-
smaller than physical dissipation are prohibitively small. It istion terms and diffusion coefficients similar to some of the
interesting to note that when acting on a solenoidal field Models mentioned above. More precisely, we use reaction
the Crank-Nicholson scheme only preserves the diverierms of the form
gence-free character af when the linear viscous term
(Upm)[uVZv+AV(V-v)] is such that\ = /3, i.e., when RNy(NLW,S)=NS, Rg(N,W,S)=—-NS
the bulk viscosity is zero. All simulations are performed with
a spatial resolution of 236grid points in the reaction-
diffusion case and of 5%2in the case of the full hydrody- Rw(N,W,S)=0,
namic model. The time step is 0.1 in all cases.

V. NUMERICAL SIMULATIONS

and a stochastic nonlinear diffusion coeffici@t(N,W,S)
=D{(1+ 0)NS, whereo is a random number with a trian-
gular distribution of supporf—p,p], 0<p=<1, as in Ref.
There is extensive literature on the fingering instability of[61]. Randomness D" represents inhomogeneities in the
interfaces(see, for instance, Ref§51,52)), in particular, in  agar[61]. Note thatD™ vanishes when eitheét or Sare zero.
the case of reaction-diffusion systefs3—55, or in situa- According to Ref.[61], this reflects the fact that bacteria
tions where hydrodynamic phenomena such as viscous firmove slowly wherN or Sare small. Variations db™ with W
gering or Rayleigh-Taylor instabilities are coupled toare neglected in the simulations below. As a consequence,
reaction-diffusion equationg56-58. In what follows, we the equation folW decouples from the equations fdrandS
give a brief summary of reaction-diffusion models that havewhenp"®m=0.
been proposed to describe bacterial colony shéjoesa re- In order to avoid numerical instabilities, the reaction
view, see, for instance, Ref6,19]). We then present simu- terms on the right-hand sides of Eq$3) are set to zero iN
lations of our model with similar reaction and diffusion is less than some cutoff valuset to 0.005 in the numerics
terms. FoW=0, Ry=—Rs=NS, andDN andD*® constant, except for the simulations of Figs. 4 and 5, for which it is
Kessler and Leving59] showed that in order for the front equal to 0.02 Finally, we replac&/ S/Sby V S/(S+0.05) in
solution representing the colony boundary to become unthe expression foo to numerically keep this quantity finite
stable, the reaction terRy should be set to zero i is  when S is small. Initial conditions are of the forniN
below some threshold value, which depends on the ratic=0.71 exp—20(x>+y?)], S=0.35, andW=W,=const, as
DN/DS. This is sufficient to destabilize the colony boundarywas the case in Ref61].
but not to produce branches. By adding a bacterial “death” In dry media, i.e., whelVis small, a discussion similar to
term toRy, Goldinget al.[6] indicated that thick branches that of Sec. IV B but for arbitrary values @f and ¢, indi-
could be obtainedthe colony is then formed by active and cates that gradients & remain small. In other word§Y is
inactive (or “dead”) bacterid. Earlier, Kitsunezakj60] had  almost constant and Eq&l3) are thus very similar to clas-
proposed a model with bacterial dec@yr death and non-  sical reaction-diffusion equations, such as those discussed in
linear diffusion, which produced dendriticlike structures. HisRef. [61]. One therefore expects similar types of results, as

A. Advection-reaction-diffusion model
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-10 -5 0 5 10 -10 -5 0 5 10
FIG. 4. Numerical solution of Eqg13) and (14) at t=2700. FIG. 6. Numerical solution of Eq$13) and(14) att=300. The
The parameters arBN=0.005(1+ 0)NS, where o is a random  parameters ar®N=0.05(1+ ¢)NS, whereo is a random number
number with a triangular distribution of suppdrt-1,1], Rg= with a triangular distribution of suppoft—1,1], Rs=—NS, Ry
—NS, Ry=NS, Ry=0, ko=1, y=0, DS=0.01, and DWY =NS Ry=0, ky=1, y=0.0025, D5=0.01, and D"=0.005.

=0.005. Left: profiles oN, S, andW as functions of position, along Left: profiles ofN, S, andW as functions of position, along a hori-
a horizontal line going through the middle of the colony. Right: zontal line going through the middle of the colony. Right: gray-
gray-scale picture ol as a function of space. scale picture ol as a function of space.

exemplified in Figs. 4 and 5, for whictW,=0.2. In Fig. 4,
y=0, i.e.,v"®™=0. In Fig. 5,y=0.0025 but the diffusion
coefficient ofSis smaller and the diffusion coefficient g¥

is larger than for the simulation of Fig. 4. All parameter

values_ are given In the figure captions. W.h‘m's large, IV. Initial conditions forN, S, andW are the same as for the
water is strongly influenced by the dynamics Mfand S. . ! : . e

Figures 6 and 7 show the results of two simulations of Eqs?c"mUI"’ltlons of the advection-reaction-diffusion model. The
(13 and (14) with Wo=1, for different values ofy and cutoff on the reaction terms is set to 0.002 in simulations of
different values of the diffusion coefficient & The colony ~ S€C- VB 1 and t0 0.015in Sec. VB 2.

shown in Fig. 7 is the same as that shown in Fig. 3, but at a
later time.

It is obvious from these simulations that very different We can use the full hydrodynamic model to test the
colony shapes can be obtained from the advection-reactiorthemotactic limit discussed in Sec. IV. We cannot set to zero
diffusion model(13),(14). In both Figs. 5 and @\l has a peak the diffusion coefficients in the equations ot andS, since
in the center of the colony. This is due to the fact that inthis would lead to numerical instabilities. Moreover, decreas-
these simulations, the ratd"/D® is relatively large(i.e., of  ing these diffusion coefficients leads to an increase in the
order 1 or larger nutrients diffuse slowly and, in regions gradients ofN and S so that the corresponding diffusive
whereN is initially large, S is depleted befor& can grow  terms are never negligible. We thus expect the chemotactic

that the fluid is Newtonian. We also skt=u/3, i.e., we
neglect the bulk viscosity of the bacterial fluid. We first con-
sider the chemotacticlike limit and compare the veloaity
obtained from Eq(11) to the velocityv"®™ defined in Sec.

1. Chemotacticlike limit

further. limit to be singular.
In the absence of forcing in Eq411), the velocity fieldv
B. Full hydrodynamic model remains close te € as long as the latter is not too largee.,
We now turn to the full hydrodynamic model. We first 85 long as the nonlinear or viscous terms do not drive the
. X ¥ i . ) ;
consider the chemotacticlike limit of Eq&l2) and then il- equation forv™). As discussed in Sec. IV, if the reaction

lustrate the role of the small-scale forciffg produced by t&rms always dominate the dynamics $fand if the time
collective bacterial motions. These simulations all assumé&erivative ofN/p is small, one expects

12{ W
0.8 - 1 .JL // N
061 N 08{ N——=
0.4 1 S\ 8‘2'
W Gl
0.2 4 02 - S
01— - - - 0
-10 -5 0 5 -10 -5 0 5 10
FIG. 5. Numerical solution of Eqg13) and (14) at t=1700. FIG. 7. Numerical solution of Eq$13) and(14) att=400. The
The parameters arBN=0.005(1+ 0)NS, where o is a random  parameters ar®N=0.05(1+ o)NS, whereo is a random number
number with a triangular distribution of suppdrt-1,1], Rg= with a triangular distribution of suppoft—1,1], Rs=—NS, Ry

—NS, Ry=NS, Ry=0, ky=1, y=0.00025, D5=0.005, and =NS, Ry=0, ko=1, y=0.01, DS=0.1, andDV=0.005. Left:
DW=0.1. Left: profiles ofN, S and W as functions of position, profiles ofN, S andW as functions of position, along a horizontal
along a horizontal line going through the middle of the colony.line going through the middle of the colony. Right: gray-scale pic-
Right: gray-scale picture dfl as a function of space. ture of N as a function of space.
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0.8 T ; ; =15. The middle panel of Fig. 8 shows cross sections of the
x components of the two velocity fields and v®"®™ at t

0.6 - =5, whenE is less than 20%. The agreement between the
two profiles is quite good. At= 20 (bottom panel of Fig. B

E o4l ] when E=60%, the agreement between the two profiles is

only qualitative. At later times, the diffusion terms have be-
come too large for the chemotactic limit to be significant. To

02 summarize, in the absence of forcing in the hydrodynamic
0.0 , ) ) equation, the advection-reacti_on-diffusio_n mod]é}),(lé_l) i_s
o 5 10 15 20 expected to and does only give a qualitative description of
time the colony dynamics.
0.015 2. Small-scale forcing
0.010 In the presence of a small-scale forciRg# 0, fine-scale
0.005 structures develop within the colony and on its boundary, as
0.000 shown in Fig. 9, which is a gray-scale rendering of the bac-
terial densityN as a function of space for a Reynolds number
-0.005 Re=0.15. In this simulationy=0, F,=0, andF is of the
-0.010 form Fg=Npf, wheref is a white noise in time whose Fou-
0,015 . . . . rier spectrum has Gaussian-distributed random phases and is
0 20 40 60 80 100 supported on an annulus of width 5 and radius 11.25. The
position field f is also such thaW-f=0. The small-scale forcing
0.02 i i i i therefore vanishes outside the colony and increases with the
amount of water present in the systésince it is assumed
0.01 that bacteria are more active in wetter regions of the cglony
We also show in Fig. 9 an enlargement of the middle-right
0.00 part of the colony, with the velocity field superimposed.
\ortices and jets are visible within the colony. Their lifetime
-0.01 is longer than the time scale of the forcifthat is they per-
sist over many time stepsA typical vortex size is about
-0.02 . . . , twice that of the small-scale forcing; the length of the jets is
0 20 4 60 80 100 up to three times the diameter of a vortex. The dynamics is
position dominated by hydrodynamic motions: the chemotactic part

of the velocity field (|v©||) is eight times as small as the
hydrodynamic part |(v"||). The solenoidal part obC is
about a thousand times as small as its compressible part. This
is due to the fact thatV varies slowly throughout the colony.
Equation(10) indeed shows that whepis constant, the curl

C .
—v°"eM|)/max(|v||) as a function of time. Middle: profiles of the of v~ can only grow through_ a term proportional EW_
x components ob®"e™ (solid line) and v (dashed ling at t=5. X VN. Because vortices and jets are larger than the size of

Bottom: same as above but for: 20. Position is measured in grid the imposed forcing, we believe that the mechanism at play

FIG. 8. Numerical solution of Eq$12), in the absence of forc-
ing. The parameters a®@N=0.005(1+ o)NS, whereo is a ran-
dom number with a triangular distribution of suppért 1,1], Rg
=-NS, Ry=NS, Ry=0, ky=1, DS=0.005, DW=0.1, u
=0.0002, W,=0.02, and y=1/900. Top: error E=max(|v

points (512 grid points correspond to a length of B here is that of transfer of energy from small to larger scales.
However, no complete inverse cascade is clearly observed.

2y N VS ) Our_results are _nevertheless very prorr_]ising,_ given tha'_[ nu-

u:k—ozf(—s)=v° em merical constraints prevent us from imposing a realistic

separation of scales between the forcing and the size of the

Numerical simulations of the full moddin the case of a colony. , ,
Newtonian fluid show that the relative differencé& The small-scale forcing affects the speed at which the
=maxd|v—v°he”]|)/maxd|v||) remains of the order of a few colony boundary moves. Our numerical simulations mdeeq
percent only for a short period of time. Qualitative agree—fshOW that colonies grow faster_when the_ Reynolds number is
ment however is fairly good, even at longer times. Figure dncreased. Moreover,. the vortices an.d jets located near the
shows the results of a numerical simulation of E4®). The f:olony boundary act like a random_nqse that destabilizes the
parameters are chosen such thatand \ = w/3) are small: mterface. We c.hecked that very sm_ular. colony patterns are
this keepa close tov®, as discussed abovéy is small, so qbtamed even in the absence of noise in the bacterial diffu-
that (9/dt)(N/p)=— (9l 3t) (Wi p)<1: DS is small enough, Sion coefficient.
but not too smallin order to haveRg=NS>DSV?2S, at least

in the beginning of the simulatiors =0. The errorE, plot-

ted as a function of time in the top panel of Fig. 8, increases We have proposed a hydrodynamic model that gives a
rather rapidly and saturates to a value of about 60% at general description of bacterial colonies growing on soft agar

VI. CONCLUSIONS
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than at the boundary, in agreement with experimental obser-
vations. Finally, numerical simulations of the full hydrody-
namic equations illustrate that our model is able to reproduce
interesting colony shapes together with nontrivial dynamics
inside the colony. In particular, collective behaviors such as
whirls and jets can be generated by a small-scale random
forcing. The basic principle behind the existence of these
coherent structures is the transfer of energy from small to
large scales in the equation describing the dynamics of the
two-dimensional velocity field of the complex fluid. This
phenomenon is analogous to the inverse cascade observed in
two-dimensional turbulence. This description implies that
vortices and jets are characteristic of bacterial systems con-
fined to quasi-two-dimensional domains, as is the case in the
experiments of Ref426,27. It is different from the sponta-
neous organization observed in the model of self-propelled
particles proposed by Vicsek al.[36], where collective be-
haviors occur regardless of the dimension of the system.

We believe that this paper represents a first step towards
the understanding of complex dynamics in bacterial colonies.
The main characteristic of our model is that conservation
equations for the bacterial, nutrient, and water concentrations
are coupled to a single hydrodynamic equation for the veloc-
ity field of a complex fluid which consists of bacteria and
water. Equationg12) are completely general and different
types of bacteria will lead to different expressions for the
reaction terms, the stress tensors, and the diffusion coeffi-
cients. Future work will deal with an experimental investiga-
tion of the rheologic and hydrodynamic properties of the
bacterial fluid used in Ref26], an analysis of the reaction-
diffusion model(13), and a detailed investigation of the cou-
pling between colony shape and hydrodynamics, as de-
scribed by Eqs(12).
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=0.01,W,=1, andy=0.000 044. Top: gray-scale picture Nfas
a function of space at=2000. Bottom: velocity fieldv in the
middle-right part of the colony. The length of each arrow is propor- APPENDIX A: HORIZONTAL VELOCITY PROFILE
tional to the amplitude of. The maximum of |v|| is 0.01.

In this appendix, we solve Brinkman'’s equati),

plates. In particular, a single set of equations captures motion

inside as well asat the boundaryof the colony. When bac- 0=—Vp+u*VZipW— ﬁvW,

terial collisions dominate, these equations formally reduce to k

a set of advection-reaction-diffusion equations. This ap- o . )

proach thus provides a framework in which macroscopidor @ velocity field of the forva=f(E)x, wherez is the
reaction-diffusion models of bacterial colonies are justifiedvertical coordinate pointing upward amds a unit vector in
on the basis of hydrodynamic considerations. The advectiorthe horizontal directiorx. We assume stress-free boundary
reaction-diffusion equations we obtain treat the amount ofonditionsdf/dz=0 at z=0 and no-slip boundary condi-
water in the colony as one of their dependent variables. Thitons f(z)=0 at z=—H. Moreover, in order to mimic a
allows us to describe colonies that are drier in the interiorsituation where fluid motion is triggered by bacteria swim-

031906-13



J. LEGAAND T. PASSOT PHYSICAL REVIEW E57, 031906 (2003

ming near the top of the agar plate, we suppose that thevhere the constart, is to be determined. Similarly, fa
pressure gradient Vp is constant in a region of thicknees  between—H and —h, the solution of
near the surface. These hypotheses only provide a cartoon of

the real system, but they are sufficient to give an estimate of d2f
the vertical variation of the horizontal velocity field. Far 0= — — a?f,
between—h and 0, the solution of dz
with f(—H)=0 is
1 d?f . - "
0=— —Vp+ —x—a?fx, o?= .
u* d7 Ku* C,sinf a(z+H)]

f(z2)=

- cosi{aH '
with Vp/u* =Cx anddf/dz=0 atz=0 is HaH)
whereC, is a yet-to-be-determined constant. The two con-
C stantsC,; andC, may be obtained by imposing the continu-
f(z)=— — +C,cosiaz), ity of the global solutiorf and of its derivative at= —h. We
2 then have

C 1 cosiaz)coshha(h—H)]

_ = if —h=z=<0
o2 cosiaH)
f(2)= : . -
_ Csin(ah)sin a(z+H)] if —H=z<—h.
a’cosiaH)

Figure 10 shows a plot of this function far=1, H=10,  ¢=(f2)/(f)?, which appears in Eq$8), where(-) indicates
h=1, andC=—1. It illustrates the behavior of the velocity averaging ovef—h,0]. The formula is a little complicated,
field in the region where the pressure gradient is nonvanishbut simplifies in the limit asrH— . Since the actual value
ing, as well as the exponential decay of the velocity fieldof H is irrelevant as long as it is much larger thiantaking

outside of the layer of thickneds this limit is legitimate. We then get
We can use the solutiofAl) to calculate the coefficient

_ah —1+4(2+ ah)exp(2ah) + (8ah—7)exp4ah)
2 1+2(2ah—1)exp(2ah)+(2ah—1)%exp4ah)

A plot of this coefficient as a function ok h (not shown [38,62,63 and then discuss under which conditions one can
reveals that is always between 1 and 1.022, with a maxi- simplify the resulting model. The two-fluid description as-
mum reached forr h=2.9. Therefore, one can take=1 as  sumes that it is legitimate to talk of “bacterial fluid par-
long as vertical averaging is performed over a layer of deptlficles,” which in turn supposes that one can envision, at least

h, that is, over the region where bacteria are active. conceptually, a fluid made of bacteria. We first write the
continuity and momentum equations for each of the fluids,

APPENDIX B: TWO-PHASE FLUID APPROACH an approach similar to that developed in Hé#] for multi-

TO THE HYDRODYNAMIC EQUATIONS component reacting systems. Recall that we denoté/ltye

In this appendix, we discuss how the hydrodynamic equaMass of water and by the mass of bacteria per unit volume.

W N H :
tions for the mixture of bacteria and water may be obtained-€t v andv™ be the velocity fields for the water and the
from a two-phase fluid approach. bacteria, respectively. The continuity equations\\éandN

read
1. General setup

We start by assuming that bacteria and water can be con- IW w w
. . . . X i —+V. =Ry+V-
sidered as two interpenetrating interacting continua at V- (Wo™)=Rw+V-(DTVW), (B1)
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! d
1 /106 :5+V(MMW+NvW=RN+RW+V(Dwva
I
0.4 This equation can then be written as a continuity equation for
| p:
I
| 102 P
p W
I E+V-(pv)=RN+RW+V‘(D vw), (B3)
I
T ™
-0 -8 -6 -4 -2 0 z where the velocity field is defined by
FIG. 10. Plot of the solution given by E¢AL1) with =1, H
=10, h=1, andC=—1. The dashed line is the line of equation _WvaL NoN 1 W N
z=—h, which separates the region near the surfaceq) where UTTTWEN —;(Wv +No™). (B4)
the pressure gradient is finite from the region where no pressure
gradient is imposed. The quantityp is the density of the mixture or two-phase

fluid 38,63 made of bacteria and water. If this mixture can
be considered as a single fluid, then its velocity field is given
by v, which is the mass-weighted average of the water and
bacterial velocity fields.

whereRy andRy, are defined in the main part of the textand ~ The equations for the conservation of linear momeritum
V- (DWVW) in the equation for the concentration of water for water and bacteria read

describes dispersiof5] in the porous medium. To get an

intuitive understanding of what dispersion does, assume that 9

the bottom of the agar plate is wetter than its top. We then W—oWV+ WV - V)oW=V.TV+FY, (B5)
expect water to move upward by capillarity. At a macro- at

scopic level, water will appear to “diffuse” towards the top

of the plate. Similarly, horizontal variations in the concentra- 9

tion of water in the agar will lead to water displacement NEUNJF N(o" V)oN=V.TN+FN, (B6)
across the plate. The dispersion coeffici@®¥ is propor-

tional to the gradient with respect W of the capillary pres-  \whereTW and TN are the stress tensors for water and bacte-

sure and is, in general, a power law functionWf[65]. It ig respectively, and the external forces per unit volue
should not be confused with the molecular diffusivity, nor- gndEN can be written as

malized by the porosity of the medium, which typically af-
fects the concentration field of a fluid miscible in a given
solvent. The inclusion of dispersion in the continuity equa-
tion for W may be justified as follows. In the absence of
bacteria and if the presence of air in the porous medium is FN=gN4ENLEN.
taken into account, one may assume that the velocity fields oS8

of air and water inside the agar follow Darcy’s equation for ajere F\W= —FN describes internal interactions between bac-
two-phase fluid45]. The water velocity field can then be (orja and waterF" and FY describe interactions with the
expressed in terms_of the velocity field of the air-water MiX-g hstratefaccording to Brinkman's theory, these forces are
ture _anq of the (_:aplllary pressure. When substltuteq into thﬁamping forces, as in Eq)], F‘é" and Fg correspond to
continuity equation for water, this leads to an advection teml:hanges in linear momentum due to external forgesh as

[of the formV - (Wov") as above, but where"’ now stands . . - .
for the velocity field of the air-water mixtuteorrected by a gravity) and to bacterial activity, respectively. The foﬂég

dispersion ternfas on the right-hand side of E(B1)], pro-
portional to the gradient of the capillary press[48]. When 3 . , :
bacteria are present, Darcy’s equation no longer describes theThese equations express Newton’s law for a given ensemble of

dynamics ofv", since viscous as well as inertial effects have barticles” which move along with the fluidthat is, Wdr and
y ’ Nd7, wheredr is a volume element, are kept cons)d@b6]. As a

t(_) be taken lntp accour_1t. In ord_er to .kee'p our mod'el .a%onsequence, mass fluxes do not give rise to force terms on the
S|mple_: as pos_3|ble, we mclu_de dlsp_ersmn in the contlnwtyright_hand side of the momentum equatid6g]. Such equations
equation foW instead of adding capillary pressure terms t0¢q1g also be obtained by writing that linear momentum is con-
the equation fQ'{W (or instead of introducing a third velocity served for a volume of fluid moving along with the flow. The cor-
field for the air in the porous mediumGiven the large as-  yesponding balance equation would then contain terms describing a
pect ratio of the plate, the water concentratdhwill be  change in momentum due to mass increase or due to mass fluxes.

AN
:%"+V-(N0N%=RN, (B2)

FW=FV+FY+FY,

considered homogeneous in the vertical direction. These terms would then cancel out when the balance equation is
If we now definep=N+W, we obtain the following combined with the corresponding continuity equation to give an
equation from Eqs(B1) and (B2): equation like(B5) or (B6).

031906-15



J. LEGAAND T. PASSOT PHYSICAL REVIEW E57, 031906 (2003

describes subgrid scale dynamics in the bacterial fluid and isoundary conditions and expressions for the stress tensors
thus different fromFN=—F". Each of the momentum TY andT". The difficulty with such a description is that it
equations may be rewritten as an equation for the local correquires some knowledge of the internal forlé}éf: - Fi’\',
servation of linear momentum. For instance, by combiningwhich describes interactions between bacteria and water. Our
Egs.(B2) and (B6), one obtains next step is therefore to reduce this system to coupled equa-
tions which only involvev, rather tharw™ andv"V. More
9 precisely, given the relatively high bacterial density in the
E(Nv”)+V -(NoNoM =V . TN+ RN+ FN+FY+ Fg', system, and given the fact that no motion is observed in the
(B7) absence of bacteria or if bacteria are dead, it is legitimate to
assume that most of the dynamics is due to the bacteria. At
whereV - (NoNovV) is a vector whosgth component in Car- the hydrodynamic scale, bacteria and water move as a single
tesian coordinates i¥ - (No™o}Y) andv is the jth compo-  fluid, so that one can expect{—ov")? to be small, say,
nent ofu. The fact that bacteria are living organisms givest' —v"=em, where||m||=O(|[v"||) ande<1. The mean
rise to changes in linear momentum first because the mass ¥glocity field v is given byv=v"+esm and the velocity
a fluid particle changes as it is advected by the fltédm in  terms in the expression for the tensoread
Ryv") and second because bacterial activity may, at the hy-
drodynamic scale, appear as a small-scale forcing, which is NoN(oN—v)+WoYvW—v)=p 8(1— 6)e?mm.
accounted for byFy.
Similarly, by combining Eqs(B1) and(B5), one gets an They are therefore negligible when compared pi
equation for the local conservation of linear momentum of=0O(pv?). When combined to the continuity equatit®s),

N)2

water, which reads the momentum equatiofB9) becomes Eq(5),
2 (WoW)+ V- (W o W)=V . TW+ Ry W+ FW i =
¢9t( v™) (W™ ™) =V wo pE+p(v-V)v—V~T+F,

+v"V-(DYVW). (B8)  \yhere

By adding Eqs(B7) and(B8), we get
F=F-vRy—vRy—vV-(VD"W)

J ~
—(p0) V- (pv)=V-T+F, (B9) =F+Fg'+Fy+Ry(vN—v) +Ry(vW—v)
+(@W-0)V-(DVVW)
where
=Fs+Fe+Fy
=TW4+ TN NpN(oN=p)— W, W_
T=T"+ T = NoT(v"—v) ~Wo (v ™ ~v) and Fo= FY4+ Ry(v"V—v) + (vW—0) V- (DVVW),
and Fg=Fg+ Ry(vN—v). With the assumptions discussed
above, we can replad@- T by V- (TW+TV), and neglect the
E=FEW+EN+ RuoN+ RuoV+ oWV . (DWW last terms in the. expressions fét andFy. The forceFs
N© wo OV ) =FY+FY is typically of the formFs=—a"o"—aNoN,
=F/+Fi+ FY+FY + RN+ Ryo W+ 0"V - (DY W) wherea™ W are friction coefficients that depend on the elas-
o tic properties of the two fluids and on the geometry of the
=FstFet+Fy. porous mediunj43]. This force can then be rewritten as

Here,Fs=F'+ FY describes interaction of the fluid with the
substrateF .= Fy' + Ryo W+ vV - (DWVW) corresponds to
changes in linear momentum due to external forces andpg can therefore be approximated By= — av, Where o
transfer of water between the agar plate, the colony, and thgescribes the interaction of the fluid with the porous me-
surrounding air, anEngg‘Jr Ryv™ accounts for changes in  dium. If we takes as a parameter, Eq&2), (B3), and (5),
linear momentum due to bacterial growth and bacterial acwith W= 8p, N=(1— 8)p, and appropriate boundary condi-
tivity. The tensorT is the sum of the stress tensdfS and  tions and expressions faf and TV, form a closed system
TW of bacteria and water, corrected by terms involving eactfor the velocity fieldv, the densityp, and the nutrient con-
velocity field vN andv", as well as their mass-weighted centration fieldS. They are the hydrodynamic equations for a
averagev. single bacterial fluid that consists of densely packed bacteria
A closed set of equations for our system consists, for inand water. We expect them to be valid within the colony, i.e.,
stance, of the continuity equatiof®) and (B3), of the mo-  away from its boundary.
mentum equatioiB9), and of the continuity and momentum Near the boundary of the colony} experiences large
equations for wate(B1) and(B5), together with appropriate variations and, therefore, cannot be treated as a parameter.

Fo=—aV(oN+em)— aVoVN=—(a"+ aV)v+O(em)
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An equation for this quantity should thus be included in the

model. It turns out that it is easier to useandW as depen-
dent variables. The continuity equati®B2) can then be re-
written as a reaction-diffusion equation fidy

N ,
E+V-(Nv)ZRN+V~[N(v—vN)]=RN—V-jN,

where jN=N(vN—v)=—eNém is the flux of bacteria
through a line advected at the mean veloaity With jN=
—DNVN, we obtain Eq.(3). Note that sincejN=N(o"
—v)=WN(@N-vWY)/p, it is reasonable to assume that
[|IDN|| is proportional toN and W. Also note that higher-
order terms may be included in Edg), provided a “closure
relation” for v"Y—o"N is added to the model.

2. Case of a Newtonian fluid

The stress tensofE” and TN are written as

T™W=—p"I+72Y, TN=—pNi+7,

PHYSICAL REVIEW E67, 031906 (2003
V. ’TW: MWVZUW

V- N= VNNV (V .oV, (B10)
whereuV anduN are the water and bacterial viscosities, and
AN is a second viscosity coefficient for the bactefighich
form a compressible fluid Sincev andv" are comparable
and if we consider thapV=uN, we can simplify the vis-
cous terms, which become

w2Vt uNV 2NNV (V- o)

NuW—wgN
_ Wy  Nyp2 ol Y VT w_ N
=(u"+uM)Vu+V NEW (v"—v")
N . N_ W
+A\V|V v+N+W(v v )”

=(p+ uMV2o+ VA {(1-8) uV— suNtem]
FANV[V- (v — Sem)]
~ uV2+\V(V - 0),

where the isotropic pargs"’ and p" are the water and bac- whereu=u"V+ uN and\=\N. Note that the expression for

terial pressures, and’ and 7" are strain-related stresses. We . is different from the viscosity of a dilute suspension, for
now express the stress tensat$and 7" in terms ofv, N, which u is a function of the volume fraction of the particu-
and W, in the case where bacteria behave as a Newtonialate phasg29]. This is because in a two-phase fluid model,

fluid. We thus assume that

one does not distinguish between a solvent and a solute.
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