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Hydrodynamics of bacterial colonies: A model
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We propose a hydrodynamic model for the evolution of bacterial colonies growing on soft agar plates. This
model consists of reaction-diffusion equations for the concentrations of nutrients, water, and bacteria, coupled
to a single hydrodynamic equation for the velocity field of the bacteria-water mixture. It captures the dynamics
inside the colony as well as on its boundary and allows us to identify a mechanism for collective motion
towards fresh nutrients, which, in its modeling aspects, is similar to classical chemotaxis. As shown in nu-
merical simulations, our model reproduces both usual colony shapes and typical hydrodynamic motions, such
as the whirls and jets recently observed in wet colonies ofBacillus subtilis. The approach presented here could
be extended to different experimental situations and provides a general framework for the use of advection-
reaction-diffusion equations in modeling bacterial colonies.
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I. INTRODUCTION

The growth of bacterial colonies in the form of films o
chains is an example of simple multicellular organizati
found in nature@1#. Remarkably rich behaviors have bee
observed in colonies of bacteria forced to develop on top
a gel ~agar! containing nutrients. Expansion and growth
the colony is observed, during which cells translocate
wards regions of fresh nutrients. Depending on the wetn
of the growth medium and on the nutrient concentration,
colony boundary may take fascinating shapes, which
sometimes reminiscent of fractal structures@2–6#. The phase
diagrams established in Refs.@4,6–10#, which classify the
shape of the colony in terms of wetness and nutrient conc
tration, show that the morphology of the colony is extrem
sensitive to these two parameters. Patterns in the form
terraces, rings, and spots have also been observed inside
terial colonies@11–14#. The nature of these spatial structur
depends on the growth medium and on the type of bact
used, which often secrete some chemoattractant. As stat
Ref. @15#, understanding the shape and dynamics of labo
tory grown colonies has significant impact ‘‘in many realm
of science, ranging from acquiring a deeper knowledge
prokaryotic cell biology to answering fundamental questio
of genetics, evolution and morphogenesis.’’

Colony expansion is phenomenologically modeled
terms of reaction-diffusion equations for nutrients and c
density. These equations may involve cell multiplication a
death, linear or nonlinear diffusion, and chemotactic
sponse to nutrients or to other chemicals secreted by
bacteria@6,16–19#. Such models typically reproduce the m
tion of a front corresponding to the boundary of the expa
ing colony. Depending on the model and on its paramet
this front may become unstable and lead to the formation
branched structures@6,19#. By taking into account the pres
ence of motile and nonmotile bacteria as well as the e
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tence of respiratory waste products and chemoattract
emitted by the bacteria, the formation of concentric rings a
spots within the colony is also accounted for@20–22#. This
approach can be generalized to other types of bacterial tr
location, as discussed in Ref.@23# for swarmer cells. At a
more microscopic level, fractal-like colony boundaries c
be reproduced by a ‘‘communicating walkers’’ model,
which ensembles of bacteria at a mesoscopic scale cons
random walkers which receive energy by consuming nu
ents and use energy at a constant rate@24#. In such a model,
which also captures the response of the colony to anisotr
@25#, the boundary of the colony moves when it has been
by enough walkers in the course of their random walk.

Recent experiments described in Ref.@26# have shown
that, in wet conditions, strains ofBacillus subtilisgrowing on
an agar plate may form eddies and jets of bacteria~see also
Ref. @4#!. Such structures appear in the wetter regions of
colony and have a size that is intermediate between that
single bacterium and that of the entire colony. In these
periments, the growth medium is very wet, so that bacte
swim and do not swarm, and nutrients are plentiful, at le
initially. Moreover, the bacteria used in Ref.@26# do not pro-
duce surfactant@9#. As a consequence, the growth rate of t
colony size is much smaller than for surfactant-produc
strains, as exemplified in the experiments of Mendelson
Salhi @9#. Three levels of organization are observed in t
colony: individual cell motion at a microscopic scale, whir
and jets at a mesoscopic scale, and a macroscopic supe
tern of counter-rotating whirls. Some of the conclusions
Ref. @26# are that whirls and jets are ‘‘produced by swim
ming in high cell density populations, not by classic
swarming,’’ that the motion of the colony boundary is influ
enced by whirls and jets, and that ‘‘understanding the con
of these complex events and their relationship to known
pects of bacterial swimming and taxis presents a new c
lenge to both microbiologists and physicists.’’ More recent
intermittent whirls and jets formed by bacteria were also o
served in a quasi-two-dimensional bath ofEscherichia coli
@27#. Even though it is not clear whether both experime
were performed in the same range of bacterial density,
©2003 The American Physical Society06-1
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spontaneous formation of coherent structures in bacte
colonies confined to an almost two-dimensional domain
pears to be quite general@28#. Since reaction-diffusion equa
tions alone cannot describe such phenomena, a differen
proach is required.

The goal of this paper is to develop a hydrodynam
model suited for the description of dense colonies of bact
growing on the surface of an agar plate, as observed in
@26#. The experimental setup of Ref.@26# consists of a gel,
the agar, in which nutrients are embedded, and which
contains a complex fluid, water with bacteria. A comple
model of this rather complicated system would therefore
quire a detailed study of two different physical systems:
agar and the mixture of water and bacteria. In this paper,
focus on the latter, and only take into account basic prop
ties of unsaturated porous media to describe the agar p
and its interaction with the fluid. Even so, the description
the mixture of water and bacteria poses a challenge o
own. Because of their size, of the order of a micron, bacte
are at the upper limit of particulate systems for which coll
dal interactions are important@29#. They are also at the uppe
limit of particles that may exhibit Brownian motion in
fluid, since at ambient temperature and with velocity gra
ents estimated from the data published in Ref.@26#, the Pe´-
clet number of micron-sized particles is of order 1@30#. The
point of view developed here is that hydrodynamic effe
are dominant and are responsible for the whirls and jets
served in the experiment.

Hydrodynamic models involving bacteria have alrea
been discussed in the literature. A recent model by B
et al. @31# describing the swarming behavior ofSerratia liq-
uefacienssuggests that colony expansion is directly rela
to the spreading of a thin film made by a wetting age
secreted by swarmers. The situation considered here is
ferent, since the bacteria do not produce a surfactant
swim in a thin layer at the surface of the wet agar mediu
Models intended to describe pattern-forming instabilit
such as bioconvection~see Refs.@32,33# and references
therein! are only appropriate when bacteria are dilute in
fluid. Moreover, multiplication of bacteria is not taken in
account in such models, since it is assumed that most
convection patterns reach their steady states quickly eno
The motion of a single bacterium in a low Reynolds numb
incompressible fluid is described by the Stokes equation w
no-slip boundary conditions on the flagella and vanish
velocity at infinity. Under these conditions, hydrodynam
interactions between bacteria become significant when
average separation between neighboring cells is smaller
the largest physical dimension of each bacterium@34#. Since
the average distance between neighboring bacteria in a d
colony growing on an agar plate is about one-third of
diameter of a bacterium, considering the bacteria toge
with the water in which they move as a single complex flu
is a natural approximation.

A hydrodynamic equation was proposed by Toner and
@35# to describe the collective motion of self-propelled pa
ticles, which have a tendency to align their speed with tha
their neighbors. Such a model was introduced by Vics
et al. in Ref. @36# and further studied in Ref.@37#. Collective
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behaviors are expected to appear in this case becaus
direction ~angle! in which a particle moves is given by th
average of the directions of motion of its nearest neighb
plus some uniformly distributed noise. As a consequence
the noise amplitude is fixed, there is a threshold value of
particle density above which the average of the particle
locities over the whole particle ensemble is nonzero. Si
larly, if the particle density is fixed, there is a threshold val
of the noise amplitude below which collective motion is o
served. The hydrodynamic equation proposed by Toner
Tu in Ref. @35# therefore has a Ginzburg-Landau compone
that describes the bifurcation of the averaged particle ve
ity field towards a nonzero value. It also contains a Navi
Stokes component with nonclassical inertial terms. The
thors of Ref. @35# argue that such terms are permitte
because the Galilean invariance is broken by the ensemb
particles.

The model we present here assumes neither the spon
ous formation of coherent structures, nor the breaking of
Galilean invariance. Following Drew@38#, we consider that a
mixture cannot ‘‘know whether it is referred to an inerti
frame.’’ In fact, if the density of bacteria and water is co
stant and if bacterial collisions are neglected, the simplifi
hydrodynamic equation we obtain is the Navier-Stokes eq
tion. In a quasi-two-dimensional setting, this equation h
the property of transfering energy from small to large sca
@39,40#, and we use this mechanism of inverse energy tra
fer to model the spontaneous formation of whirls and jets
the colony. Our approach also provides a general framew
for the use of advection-reaction-diffusion equations
model bacterial colony expansion, since the continuity eq
tions we obtain for bacteria and water are reaction-diffus
equations with an advection term involving the wate
bacteria mixture averaged velocity field.

This paper is organized as follows: experimental results
Ref. @26# are summarized in Sec. II. Section III is devoted
the presentation of the hydrodynamic model. In Sec.
elimination of the velocity field leads to a set of reactio
diffusion equations with a chemotaxislike term, similar
Keller and Segel’s model for chemotactic organisms@16,17#,
but now valid for dense bacterial systems. These equat
are different from the models with nonlinear diffusion an
lubricating fluid reviewed in Ref.@6# or Ref.@19# but are also
able to reproduce branched colonies. Moreover, they h
the advantage of being based on the hydrodynamic mo
presented here. In Sec. V, we show numerical simulation
these equations and of the full hydrodynamic model d
cussed in Sec. III. Section VI is a conclusion. Appendixes
devoted to an illustration of a typical velocity field profile i
a vertical cross section of the agar plate and to an expla
tion of how our model may be derived using a two-pha
fluid approach.

II. EXPERIMENTAL RESULTS AND ORDERS
OF MAGNITUDE

Whirls and jets described in Ref.@26# appeared in large
~that is of diameter greater than 50 mm! colonies ofBacillus
subtilisgrowing in 150-mm-diameter Petri dishes containi
6-2
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HYDRODYNAMICS OF BACTERIAL COLONIES: A MODEL PHYSICAL REVIEW E67, 031906 ~2003!
soft agar.B. subtilisis a rodlike bacterium whose diameter
about 0.7mm and whose length is'3 mm. It was found in
Ref. @26# that local organization of the colony involved a
alternation of whirls and jets: a clockwise~CW! whirl would
disorganize itself into two counterpropagating jets, wh
would then lead to the formation of a counterclockwi
~CCW! whirl. The process repeated itself in a seeming
regular fashion. Whirls were organized in a superstructure
which neighboring whirls rotated in opposite directions. O
average, whirls and jets lived for only about 0.25 s and e
cycle ~CW whirl–jets–CCW whirl–jets! took about 1 s to
complete. The area of each whirl was'1000mm2 and jets
had a typical length of 95mm and a width of 12mm. The
width of each jet was therefore comparable to the rad
~.20 mm! of whirls. The speed of cells within jets was abo
100 mm s21 and typical distances traveled by cells rang
between 22mm and 30mm. As the agar dried out, swim
ming ceased except in a few scattered whirls where the sp
was as low as 4mm s21. It was checked, however, that ad
dition of water to the agar restored the swimming motion
well as the characteristic sizes of whirls and jets descri
above.

These numbers should be compared@26# to the typical
size of a bacterium (3mm) and to typical swimming speeds
about ten times the cell length per second@41,42#. For bac-
teria swimming in water ~of kinematic viscosity nW

.1026 m2 s21), and for a typical length equal to the leng
of a bacterium, we find a ‘‘small-scale’’ Reynolds number f
bacterial swimming,

ReS5
vL

nW
.

~3031026!~331026!

1026
.1024!1.

In general, hydrodynamics involving bacteria is thus cons
ered to take place at small Reynolds numbers. The situa
is slightly different in the experiments described in Ref.@26#,
since we are clearly faced with a turbulent regime wh
many spatial and temporal scales coexist. In this context,
Reynolds number usually varies according to the scale
which it is defined. For instance, if we use experimenta
measured bacterial speed values and take as a characte
length the typical distance traveled by bacteria, we find
Reynolds number

ReB.
~10031026!~2531026!

1026
52.531023,

which is one order of magnitude larger than ReS. But there
are also large-scale structures observed in the experimen
which ‘‘changes in patterns appear to be coordinated ov
thousands of microns@26#. With a characteristic length of a
thousand microns, the Reynolds number is of order 1.
other approach is to try to estimate the diffusion time sc
by considering the time it takes for whirls and jets to rea
their characteristic sizes when water is added to a dry col
~we assume that diffusion of water is fast compared to
rate at which strain is transmitted from fluid particle to flu
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particle!. This gives a diffusion timetD.5 s @26#. For a
convective time, we can take the lifetime of whirls and je
that is, tC.0.25 s. Their ratio gives a Reynolds numb
based on the dynamics of whirls and jets,

ReWJ5
tD

tC
.

5

0.25
520@ReS.

Even though ReWJ may be an overestimate of the large-sca
Reynolds number, the wide range of scales and associ
Reynolds numbers that we have just discussed suggests
inertial effects may have to be taken into account to
equately model the experiments of@26#.

Coherent structures were observed in the outer~and wet-
ter! regions of growing colonies. The speed at which t
colony boundary moved was much smaller than the bacte
velocity measured in whirls and jets, which indicates that
least two very different time scales are involved in this pro
lem. In what follows, we present a model in which colon
expansion is described by reaction-diffusion equations w
advection, coupled to an equation for an averaged velo
field. The colony boundary, which is defined as a region
steep bacterial concentration gradient, is modeled by a f
solution to the advection-reaction-diffusion equations. T
speed at which this front moves should be small compare
the magnitude of hydrodynamic motions within the colon

III. HYDRODYNAMIC MODEL

In this section, we write down hydrodynamic equatio
for a fluid that consists of densely packed bacteria and wa
To build this model, we make the following general hypot
eses, which are consistent with experimental conditions.

A. General setting

Figure 1 is a schematic of a vertical cross section of
growth medium, together with the corresponding horizon
velocity profile. As illustrated in this figure, we assume th
the bacteria swim near~and mainly at! the surface of a po-
rous medium, agar, which contains water. This is consis
with experimental observations@7,26#. A simple application
of Brinkman’s equations for porous media@43# shows that in
the presence of a shear flow near the surface, the ver
velocity profile has a characteristic length that is proportio
to the square root of the permeabilityk of the medium. More

FIG. 1. Schematic of a vertical cross section of the agar pl
together with the corresponding horizontal velocity profile.
6-3
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J. LEGA AND T. PASSOT PHYSICAL REVIEW E67, 031906 ~2003!
precisely, for a steady flow and in the absence of iner
terms, the velocity fieldvW of the fluid in the porous medium
satisfies

052“p1m* ¹2vW2
m

k
vW, ~1!

where m is the dynamic viscosity of the fluid,m* is its
effective viscosity, andk is the permeability of the porou
medium. A divergence-free solutionvW(z) of this equation
with boundary conditionvW(0)5v0x̂ at the surface is given
by

vW~z!5Fv0 exp~az!2
C

a2
@12exp~az!#G x̂,

a25
m

km*
, z<0.

Here x̂ is a unit vector in the horizontal direction and th
constantC is related to the horizontal pressure gradient,
sumed uniform in the vertical direction, by“p5Cm* x̂. At
lowest order@44#, m* .m and the typical penetration lengt
is thus of orderAk. As discussed in Ref.@44#, the actual
characteristic length depends of the geometry of the por
medium and may be as low asAk/4. If the horizontal pres-
sure gradient is small compared tov0, the expression forvW

shows that motion takes place in a thin layer of thickn
h05O(Ak) near the surface of the agar plate. SinceAk is
comparable to the size of a pore in the agar,h0 is therefore
much smaller than the thicknessH of the agar plate.

In the situation of interest here, no shear flow is impos
at the surface and stress-free boundary conditions shoul
used. This more realistic setup is discussed in Appendix
where it is shown that if the pressure gradient is nonzero
region of thicknessh near the surface, the vertical veloci
profile will be fairly large up to a depth of orderh and then
decay exponentially with a penetration length of sizeAk.
The existence of this finite, but small, penetration length j
tifies the fact that most of the motion is quasi-tw
dimensional. In practice, experiments on agar plates ab
10–12 mm deep reveal that cells grow about 20mm into the
agar. For thin agar slabs (H.3 –4 mm), the cell penetration
length is 8 –10mm.

Our hydrodynamic model consists of a momentum c
servation equation for the velocity field of the bacteria-wa
mixture, coupled to three continuity equations for the co
centration of water, bacteria, and nutrients in the top laye
the agar. In what follows, we first write these equations
three dimensions and then reduce them to a two-dimensi
approximation by averaging over the thin vertical layer
thicknessh in which fluid motions take place.
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B. Continuity equation for nutrients

As food is consumed by bacteria, fresh nutrients diffu
through the agar plate. We assume that, as far as nutrient
concerned, the agar is a homogeneous isotropic medium1 As
a consequence, diffusion of nutrients in the plate is descri
by Fick’s law with a scalar diffusion coefficientDS. Since
the region of the agar plate where the bacteria move is
compared to the horizontal extent of the plate, it is reas
able to assume that vertical diffusion of nutrients in this
gion is fast and that the concentration of nutrients is the
fore independent ofz in the top layer of thicknessh. We also
assume that the amount of nutrients at each point in the
layer is directly proportional to the concentration of nutrien
in the agar plate below. In other words, we consider thah
!H,LS, whereLS is the nutrients diffusion length in the
agar plate. Finally, we suppose that hydrodynamic moti
of nutrients are impeded by the agar matrix and are there
neglected. Thus, if we denote byS(x,y,z,t) the concentra-
tion of nutrients in the system,S satisfies the following
reaction-diffusion equation:

]S

]t
5RS1DS¹2S, ~2!

whereRS describes nutrient consumption by the bacteria a
DS¹2S describes the diffusion ofS in the substrate. In Secs
IV and V, we assumeRS52k0NS or RS52k0N(11S)2,
where N ~defined below! is the mass of bacteria per un
volume.

C. Hydrodynamics of bacteria and water

We now turn to the description of fluid motions in the to
part of the agar plate. We consider the mixture of bacte
and water as a very dense and viscous fluid, whose dyna
is in first approximation given by the Navier-Stokes equ
tion. We denote byW the mass of water and byN the mass of
bacteria per unit volume. We also define the ‘‘wetness’’ c
efficient of the medium by

d5W/~N1W!,

which measures the mass of water relative to the total m
of bacteria and water. A dry medium corresponds to sm
values ofd and a medium with no bacteria givesd51. The
experiments described in Ref.@26# where bacteria are
densely packed correspond to intermediate values ofd.

1. Continuity equations for water and bacteria

The continuity equations forN is a reaction-diffusion
equation of the form

1This condition can, of course, be relaxed. For instance, one c
envision including randomness in the flux of nutrients inside
agar.
6-4
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]N

]t
1“•~Nv !5RN2“• jN,

where RN describes bacterial growth due to nutrient co
sumption andv is the velocity field of the water-bacteri
mixture. The diffusion term comes from the fact that t
velocity field on the left-hand side of this equation is diffe
ent from the velocity field of the bacteria. In other words, t
flux jN is proportional to the velocity of bacteria relative
the mixture. If we make the hypothesis that Fick’s law
valid, we get

jN52DN
“N,

and if we considerDN to be a tensor which may depend o
the bacterial~N! and nutrient~S! concentrations as well as o
the amount of water~W! present in the mixture, we obtain

]N

]t
1“•~Nv !5RN1“•@DN~N,W,S!“N#. ~3!

A similar equation can be written forW and reads

]W

]t
1“•~W v !5RW~N,W,S!1“•@DW~W!“W#2“• jW,

whereRW represents water evaporation2 andjW is the flux of
water relative to the water-bacteria mixture. The te
“•(DW

“W) describes dispersion@45# in the porous me-
dium. Dispersion~or capillary dispersivity! of a fluid in a
porous medium takes place when the latter is not satur
by the fluid @46#; since water concentration may va
throughout the agar plate, this effect should be taken
account in our model. We will assume dispersion to be i
tropic and independent of the water velocity field. Note th
bacteria are too big to move by capillarity, so dispersion
not included in the equation forN. Since the velocity field of
the water-bacteria mixture is a mass-weighted average o
velocity fields for the water and the bacteria, the fluxjW is
opposite tojN and the equation forW therefore reads

]W

]t
1“•~W v !5RW~N,W,S!1“•@DW~W!“W#

2“•@DN~N,W,S!“N#. ~4!

Further details can be found in Appendix B, where the
equations are obtained through a two-phase fluid descrip
of the water-bacteria mixture.

2. Momentum conservation equation

The equation for the conservation of linear momentum
the mixture is, at lowest order, the Navier-Stokes equatio

2Consumption of water by the bacteria could also be included
RN andRW .
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1r~v•“ !v5“•T1F, ~5!

wherer5N1W, “•T is a stress tensor andF represents the
sum of external forces exerted on a fluid particle. In wh
follows, we consider that the bacteria-water mixture beha
as a Newtonian fluid. The numerical simulations of Sec. V
show that many qualitative aspects of bacterial colony
namics can be obtained within this simple approximatio
Since the goal of this paper is to show how reaction-diffus
equations can be combined with hydrodynamics to desc
the evolution of bacterial colony shapes as well as comp
bacterial dynamics within a colony, including nonlinear e
fects such as viscoelasticity is beyond the scope of this w
We therefore assume that

“•T52“p1m¹2v1l“~“•v !,

wherem is the dynamic viscosity of the mixture andl is a
second viscosity. We expect the mixture of bacteria and
ter to behave as an almost incompressible fluid, so the
term in the above equation will remain small. The forceF
contains a friction termFs52a v due to the interaction be
tween the fluid and the agar matrix, bulk forces such as gr
ity, and a ‘‘bacterial activity’’ termFg that represents subgri
scale dynamics due to flagella activity. We consider that
cause bacteria are living organisms, their consumption
food leads to a source term in the hydrodynamic equa
~see also Ref.@28#!, which we model as a small-scale rando
forcing Fg .

3. Pressure terms

The pressurep in the expression for“•T is the sum of
the water and bacterial pressurespW andpN. WhereaspW is
the hydrodynamic pressure for an incompressible fluid,
pressurepN needs to be related to the bacterial densityN
through an equation of state. This implies thatpN is locally
defined, whereaspW is a nonlocal function of the water ve
locity field vW, such that“•vW50. It is therefore natural to
decompose the velocity fieldv into a componentvC driven
by bacterial collisions and a hydrodynamic componentvH,
which remains divergence free. This decomposition does
necessarily coincide with the separation ofv into its com-
pressible and solenoidal components, sincevC may also
have a divergence-free part. We will write an evolution equ
tion for vC, which is driven by local variations ofpN ~more
precisely by local variations ofpc

N defined below! and deter-
mine pI[pW1pN2pc

N by imposing that“•vH remains
equal to zero. This procedure will be implemented in S
III E in the case of a two-dimensional reduction of our mod
for a Newtonian fluid.

We now discuss the physical origin of the compressi
part of the bacterial velocity fieldvN. One should imagine a
fluid made only of bacteria. In such a fluid, the pressurepN is
a function of the densityN and of the temperatureT. The
virial expansion forpN is of the form@47#

pN5kT@N1B2~T!N21O~N3!#, ~6!
n

6-5
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where k is Boltzmann’s constant andB2(T) is the second
virial coefficient. For most gases and compressible liqu
the pressure is typically linear in the density. We expect
pressure of a fluid of dead bacteria to be described by su
linear equation. The quadratic term in Eq.~6! is important
when binary collisions cannot be neglected. It is obser
that live bacteria undergo many such binary collisions, wh
suggests that the effective temperature of a collection of
ing cells is higher than if they were dead. This is suppor
by the results of Wu and Libchaber@27#, who measured the
effective temperature of a ‘‘bacterial bath’’ ofE. coli in a
soap film, and found a temperature of the order of a hund
times the room temperature. In what follows, we consi
that the linear term inN is at the origin of a quasi-
incompressible behavior of the bacterial fluid and is the
fore separated from the corrections proportional toN2. In
other words, we write

pN5p0
N1pc

N , where pc
N5g~S,N,W!N2.

It is reasonable to assume thatg(S,0,W).0. At orderN2,
the pressure termpc

N therefore gives rise to a force whic
drives bacteria away from ‘‘overcrowded’’ regions. This pr
cess is faster than bacterial diffusion@see Eq.~3!#, which
describes individual random motion. Moreover, it only tak
place when bacteria are alive and close to each other.
shown in Sec. IV that when coupled to nutrient consumpti
this process has, at least for short times, an effect analo
to classical chemotaxis. More precisely, bacteria tend
move towards fresh nutrients. The existence of such a p
nomenon is particularly interesting here since it seems d
cult to envision how classical chemotaxis can explain colo
expansion towards fresh nutrients when the latter are in la
supply and when bacteria are packed in a dense layer.

To summarize, our hydrodynamic model reads

]S

]t
5RS~N,W,S!1DS¹2S,

]W

]t
1“•~W v !5RW~N,W,S!1“•@DW~W!“W

2DN~N,W,S!“N#,

]N

]t
1“•~Nv !5RN~N,W,S!1“•@DN~N,W,S!“N#,

]v
]t

1~v•“ !v5
1

N1W
@“•T1Fs~N,W,v !1Fe

1Fg~N,W,S,v !#, ~7!

whereFe represents external forces and where we made
plicit the dependence ofRS , RN , RW , DN, DW, Fs5
2a(N,W)v, and Fg on N, W, S, and v. For clarity, these
dependences will be implicit in what follows. With appropr
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ate boundary conditions and expressions forT, these equa-
tions describe bacterial dynamics in regions of nonunifo
wetness.

D. Two-dimensional reduction

Given the small thickness of the layer in which fluid m
tion takes place~see Fig. 1!, it is appropriate to reduce th
three-dimensional model~7! to a two-dimensional one. We
already mentioned that it is reasonable to assume thatW and
Sdo not depend on the vertical coordinate. We also cons
that the vertical variations ofN in the thin layer of thickness
h are small. The velocity fieldv however varies strongly in
the vertical direction, as discussed in Sec. III A. At the t
surface it is natural to assume stress-free boundary co
tions for the velocity, while at the bottom of the agar pla
we should enforce a no-slip boundary condition. From
practical point of view the depth at which the latter bounda
condition is enforced is irrelevant as long as it is larger th
a few multiples ofh. One may expand the velocity fieldv on
a Galerkin basis consisting of vertical profilesf i(z) satisfy-
ing the appropriate boundary conditions, asv(x,y,z,t)
5( iui(x,y,t) f i(z). Projecting the momentum equations o
this basis leads to two-dimensional equations for the velo
componentsui(x,y,t). A two-dimensional reduction in term
of a single horizontal velocity field is possible if a decomp
sition of the formv(x,y,z,t)5 f (z)u(x,y,t) is a valid ap-
proximation. It is then important to find the most appropria
profile f (z). The calculation off (z) is illustrated in Appen-
dix A in a simple case. We also assume that the vert
component of the velocity field is negligible in the top laye
Microscope observations of the colony indeed show that b
teria stay in the plane of focus for a long time, indicatin
very little vertical displacement. By substituting this decom
position ansatz into Eqs.~7! written for a Newtonian fluid
and by integrating in the vertical direction over the depthh
of the layer where most of the activity takes place, we obt

]S

]t
5RS1DS¹h

2S,

]W

]t
1“h•~W v̄ !5RW1“h•~DW

“hW2DN
“hN!,

]N

]t
1“h•~Nv̄ !5RN1“h•~DN

“hN!,

]v̄
]t

1z~ v̄•“h!v̄5
1

N1W
@2“hp̄1m¹h

2v̄1l“h~“h•v̄ !

2hv̄1F̄e1F̄g#, ~8!

wherev̄(x,y,t)5^ f &u(x,y,t) is the vertically averaged hori
zontal velocity,p̄5^p&, “h is the gradient in the horizonta
direction,
6-6
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z5
^ f 2&

^ f &2
, h5a2m

^d2f /dz2&

^ f &
,

^g&5
1

h S E
2h

0

g~z!dzD ,

and g is any function ofz. Vertical averaging is a standar
procedure for thin films, usually described by linear equ
tions, and for shallow water models, for which vertical pr
files are constant. In the situation considered here, nonlin
effects are not negligible and as a consequence, the nonl
term is renormalized by the coefficientz. The latter depends
on the vertical profile of the velocity field and on the dep
over which averaging is performed. In Appendix A, we sho
that the profile given by Brinkman’s equations in the pre
ence of a pressure gradient supported near the top lay
such thatz.1 as long as the averaging is performed ove
distance comparable to the depth over which the pres
gradient is supported. In what follows,z will therefore be
taken equal to 1, the bars will be dropped, and all gradie
will implicitly be horizontal gradients.

E. Separation between the expansion-driven and hydrodynamic
components of the flow

The momentum equation in system~8! reads

]v
]t

1~v•“ !v5
1

r
@2“p1Dv2hv1F#, ~9!

where p5pW1pN, Dv5m¹2v1l“(“•v), and F5Fe
1Fg . As discussed in Sec. III C 3, we now decompose
velocity field v into a componentvC driven by bacterial
collisions and a hydrodynamic componentvH, which satis-
fies “•vH50. The evolution equation forvC5v2vH is
defined as

]vC

]t
52

1

r
“pc

N1
1

rm
DvC2

hm

rm
vC, ~10!

wherehm andrm are typical~constant! values ofh andr in
the system. This equation is linear invC, which allows us to
obtain a single equation forv, Eq. ~11!, as shown below.
Substracting Eq.~10! from Eq.~9!, the equation forvH reads

]vH

]t
52~v•“ !v2

1

rm
DvC1

hm

rm
vC1

1

r
@2“pI

1Dv2hv1F#.

The pressurepI5p2pc
N5pW1p0

N is obtained from the con
dition “•vH50 for all times. The definitions ofvC and pI

satisfy the following criteria: when bacterial collisions dom
nate the dynamics~i.e., if “pc

NÞ0 and if the forcing is neg-
ligible!, the velocity field is mostly compressible and shou
be close tovC; when hydrodynamic motions take place,v
should be mostly incompressible~since v.vW and “•vW
03190
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50) and close tovH. The definition ofpI ensures that thes
conditions are satisfied. The equation forvH can be rewritten
as

]vH

]t
52~v•“ !v2

“pI

r
1S 1

r
2

1

rm
D ~DvC1DvH!

1
1

rm
DvH2

h

r
~vC1vH!1

hm

rm
vC1

F

r
.

The condition“•vH50 leads to an equation forpI , which
may be difficult to solve, especially if the boundary cond
tions are not periodic@48#. Here, sincev vanishes outside the
colony, one can use periodic boundary conditions with a b
whose size is larger than that of the colony. As a con
quence, the above equation may be replaced by

]vH

]t
5PF2~v•“ !v1S 1

r
2

1

rm
DDv1

1

rm
DvH

2S h

r
2

hm

rm
Dv2

hm

rm
vH1

F

r G
5PF2~v•“ !v1S 1

r
2

1

rm
DDv2S h

r
2

hm

rm
Dv

1
F

r G1
1

rm
DvH2

hm

rm
vH,

wherePv is the projection ofv on its solenoidal part. With
periodic boundary conditions,P is uniquely defined byPv
5“3vS , wherev5“3vS1“V. Moreover, this projection
can easily be performed in Fourier space. In the above eq
tions, we used the fact thatPDvH5DPvH5DvH, sincevH

is solenoidal. Initial conditions forvH are such thatvH50
and since“•vH is conserved by the above equation,vH

remains solenoidal. The dynamic equation forv5vC1vH is
then

]v
]t

5PF2~v•“ !v1S 1

r
2

1

rm
DDv2S h

r
2

hm

rm
Dv1

F

r G
2

1

r
“pc

N1
1

rm
Dv2

hm

rm
v. ~11!

With F50, the velocity fieldvH is expected to remain sma
as long asvC and DvC are small. Our full hydrodynamic
model then reads

]S

]t
5RS1DS¹2S,

]W

]t
1“•~W v !5RW1“•~DW

“W!2“•~DN
“N!,
6-7
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]N

]t
1“•~Nv !5RN1“•~DN

“N!,

]v
]t

5PF2~v•“ !v1S 1

r
2

1

rm
DDv2S h

r
2

hm

rm
Dv1

F

r G
2

1

r
“pc

N1
Dv
rm

2
hm

rm
v ~12!

for a Newtonian fluid, i.e., withDv5m¹2v1l“(“•v).
The forceF is given byF5Fe1Fg . Again, Fe corresponds
to changes in linear momentum due to external forces andFg
describes changes in linear momentum due to bacteria
tivity.

The rest of this paper is devoted to a discussion of so
basic properties of the hydrodynamic model~12!. In Sec. IV,
we investigate the role of the nonlinear term in the equat
for the bacterial pressurepN and show that when this term i
dominant, collective motion of the colony towards fresh n
trients is expected. In this case, Eqs.~12! have a singular
limit in the form of a set of advection-reaction-diffusio
equations, the behavior of which is then illustrated in t
numerical simulations of Sec. V. The advection term in th
equations is proportional to the gradients ofS, and therefore
leads to collective behaviors similar to classical chemota
The role of water in these equations is also analyzed. At
end of Sec. V, we present simulations of the complete hyd
dynamic model~12! and show that coherent structures in t
form of whirls and jets are obtained when the small-sc
forcing Fg is finite.

IV. EXPANSION-DRIVEN DYNAMICS

A. Chemotacticlike behavior

In 1971, Keller and Segel@16,17# proposed a simple
model for the chemotactic behavior of motile bacteria swi
ming in a fluid in the presence of a gradient of nutrien
Conservation of bacteria and nutrients was described
terms of two advection-diffusion equations, where the adv
tion term in the equation forN was of the form
“•@Nx(S)“S#. The coefficientx(S) was called ‘‘chemot-
actic coefficient.’’ A similar model may be recovered fro
our general hydrodynamic equations if we eliminate the
locity field v from Eqs.~12!. We indeed have

]S

]t
5RS1DS¹2S,

]W

]t
1“•~W v !5RW1“•~DW

“W!2“•~DN
“N!,

]N

]t
1“•~Nv !5RN1“•~DN

“N!, ~13!

where,RN models bacterial growth due to nutrient consum
tion, RW accounts for water loss, andRS describes nutrien
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consumption by bacteria. This system is in closed form iv
is a function ofN, W, andS. It indicates that, as bacteria ar
advected at the mean velocityv, their mass changes by dif
fusion and by growth due to nutrient consumption; nutrie
diffuse in the substrate and are consumed by bacteria. N
that Eq.~3! was written with the assumption thatDN van-
ishes whenW50, which is necessary if one wantsW50 to
be a solution of Eqs.~13!.

We now obtain an expression forv of the formx(S)“S
as an illustration of the role of the termgN2 in the expres-
sion for the bacterial pressurepN. We first assume that nu
trient dynamics is dominated by the reaction termRS , i.e.,
neglect diffusion in the continuity equation forS. With RS
52k0N f(S), where, for instance,f (S)5S as in Ref.@17# or
f (S)5(11S)2 as in Ref.@49#, and in the absence of diffu
sion @17#, Eq. ~2! reads

N52
1

k0

]G~S!

]t
, where G~S!5E dS

f ~S!
.

Dropping all but the expansion term on the right-hand side
Eq. ~9!, neglecting the nonlinear terms and assuming thag
is a constant, we obtain

r
]v
]t

52g“~N2!522gN“N,

i.e.,

]v
]t

522g
N

r
“N52g

N

r
“S 1

k0

]G~S!

]t D5
2g

k0

N

r

]“G~S!

]t
,

which, after integrating over time~assuming that tempora
derivatives ofN/r are negligible!, gives

v.
2g

k0

N

r

“S

f ~S!
5x~N,W,S!“S[vchem, ~14!

where

x~N,W,S!52
g

k0

N

r

1

f ~S!
.

The expressions ofRS andx(N,W,S) are therefore related to
each other through the expansion term (gN2) in the momen-
tum equation~9!. If N/r.1 and f (S)5S, we obtain a term
similar to Keller and Segel’s@17# chemotactic coefficient
x(S)52(g/k0)(1/S). With f (S)5(11S)2, we obtainx(S)
52(g/k0)@1/(11S)2#, which is also observed in chemo
axis experiments@50#.

It is important to realize that the chemotactic limit w
have just discussed may not be regular~i.e., that the solution
to the hydrodynamic equation with small inertial, pressu
and diffusive terms may not be a small perturbation of
solution of the hydrodynamic equation with these terms
to zero!. In particular, the velocity fieldv5x(N,W,S)“S
breaks the approximation thatv should be almost solenoida
6-8
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Moreover, the assumption thatN/r is constant in time,
which was made to obtain a simple expression forv will not
be preserved by these equations, unlessW is small. In Sec.
V B 1, we provide a numerical comparison of the full hydr
dynamic model with the advection-reaction-diffusion equ
tions given by Eqs.~13! and ~14!. We show that the limit
discussed here is indeed singular but that the advect
reaction-diffusion model gives qualitatively good resul
even at large times. Equations~13! and ~14! represent an
advection-reaction-diffusion model for the growth of bac
rial colonies. Together with bacterial and nutrient concen
tions, this model involves a third variable, water, which pla
a role similar to the wetting agents or lubricants produced
some bacterial strains@4,6,10#. This is illustrated in the fol-
lowing section, where some properties ofW are discussed.

B. Bacteria-water interaction

Let us consider a colony with a straight boundary, mov
at a uniform speedc. If we denote byx the coordinate in the
direction transverse to the boundary and if we place o
selves in the frame moving at speedc, the equation forW
becomes

]W

]t
2c

]W

]j
1

]~Wv !

]j
5RW1

]

]j S DW
]W

]j D2
]

]j S DN
]N

]j D ,

wherej5x2ct. The last term on the right-hand side of th
equation is a flux in the direction of the gradients ofN, that
is, towards the inside of the colony. One can understand
at a microscopic level: bacteria going down the gradients
N are replaced by water as they move.

Let us assume thatN and S have profiles as sketched i
Fig. 2, and thatRW50. Let j1 andj2 be the coordinates in
the moving frame of two points on each side of the front a
let us integrate the above equation betweenj1 and j2. We
obtain

Q[
d

dtEj1

j2
W~j!dj5c@W~j2!2W~j1!#1W~j1!v~j1!

2W~j2!v~j2!1@DW~j2!Wj~j2!2DW~j1!Wj~j1!#

2@DN~j2!Nj~j2!2DN~j1!Nj~j1!#,

where DN,W(j)5DN,W
„N(j),W(j),S(j)… and Wj and Nj

stand for the derivatives with respect toj of W and N, re-
spectively. Since the velocity

FIG. 2. Sketch of the profiles ofN andS in a direction perpen-
dicular to the colony boundary.
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2g

k0

N~j!

W~j!1N~j!

Sj

f „S~j!…

is proportional toN, we can consider thatv(j2).0, if j2 is
chosen far enough from the front solution~see Fig. 2!. By
choosing j1 in a similar way, we can neglectWj(j1),
Wj(j2), Nj(j1), andNj(j2), so that

Q[
d

dtEj1

j2
W~j!dj.c@W~j2!2W~j1!#1W~j1!v~j1!.

Moreover,v(j1).0. If we start from a situation whereW is
homogeneous, thenQ is positive due to a flux of wate
through the linej5j1. As a consequence, we expectW(j1)
to become less thanW(j2), which also increases the amou
of water present near the front of the colony. This mec
nism can saturate either by including evaporation into
model~i.e., by settingRW52lW wherel.0), or if one of
the terms neglected above becomes large. Also note tha
v(j1) to be significantly large, one needsSj(j1) finite,
which implies that the diffusion length of the nutrients
larger than that ofN andW.

This argument indicates that if the above conditions ho
one expectsW to be relatively large near the boundary of th
colony. From a physical point of view, bacteria moving t
wards fresh nutrients drag the water along so that wate
depleted inside the colony. This effect is counteracted by
diffusion term in the equation forW. From a biological point
of view, an increased amount of water will help bacte
swim and will therefore favor colony expansion. From
modeling point of view,W plays a role similar to the lubri-
cant @6,10# or wetting agent@4# secreted by some bacteria
strains to sustain bacterial motion. Figure 3 shows a solu
to Eqs.~13! at time t580. The shape of the colony can b
seen from the gray-scale picture ofN as a function of space
shown on the right. On the left side of the figure, the profi
of N, S, andW are plotted along a horizontal half-line goin
through the middle of the colony. In this run, the maximu
of W increases as a function of time until the gradients oS
behind the front become too small. Note that the gradient
W are not small behind the front, which also provides
mechanism to reduce the value ofQ. Experimental observa

FIG. 3. Numerical solution of Eqs.~13! and ~14! at t580. The
parameters areDN50.05(11s)NS, wheres is a random number
with a triangular distribution of support@21,1#, RS52NS, RN

5NS, RW50, k051, g50.01, DS50.1, andDW50.005. Left:
profiles ofN, S, andW as functions of position, along a horizonta
half-line going through the middle of the colony. Right: gray-sca
picture ofN as a function of space.
6-9
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tions confirm that the region just behind the colony bound
is much wetter than the agar in front of it.

V. NUMERICAL SIMULATIONS

We start this section with numerical simulations of t
advection-reaction-diffusion equations introduced in Sec.
We then turn to the full two-dimensional hydrodynamic sy
tem written for a Newtonian fluid and illustrate the chem
actic and hydrodynamic limits of this model. The simulatio
shown below illustrate a few properties of Eqs.~12! and~13!
but are by no means the result of a complete exploration
these models. Such a discussion is beyond the scope o
paper and will be published separately.

Numerical integration is performed in a box of size 8p
with periodic boundary conditions, using a Fourier pse
dospectral method. For the reaction-diffusion model, lin
terms are integrated exactly and nonlinear terms are i
grated with an Adams-Bashforth scheme. For the full hyd
dynamic model, the time stepping is based on a Cra
Nicholson scheme for the linear part of the viscous a
diffusion terms and on an Adams-Bashforth scheme for
nonlinear terms. The use of this scheme is preferred ov
low-storage third-order Runge-Kutta scheme because for
latter the time steps required to keep numerical dissipa
smaller than physical dissipation are prohibitively small. It
interesting to note that when acting on a solenoidal fieldv,
the Crank-Nicholson scheme only preserves the div
gence-free character ofv when the linear viscous term
(1/rm)@m¹2v1l“(“•v)# is such thatl5m/3, i.e., when
the bulk viscosity is zero. All simulations are performed w
a spatial resolution of 2562 grid points in the reaction-
diffusion case and of 5122 in the case of the full hydrody
namic model. The time step is 0.1 in all cases.

A. Advection-reaction-diffusion model

There is extensive literature on the fingering instability
interfaces~see, for instance, Refs.@51,52#!, in particular, in
the case of reaction-diffusion systems@53–55#, or in situa-
tions where hydrodynamic phenomena such as viscous
gering or Rayleigh-Taylor instabilities are coupled
reaction-diffusion equations@56–58#. In what follows, we
give a brief summary of reaction-diffusion models that ha
been proposed to describe bacterial colony shapes~for a re-
view, see, for instance, Refs.@6,19#!. We then present simu
lations of our model with similar reaction and diffusio
terms. ForW50, RN52RS5NS, andDN andDS constant,
Kessler and Levine@59# showed that in order for the fron
solution representing the colony boundary to become
stable, the reaction termRN should be set to zero ifN is
below some threshold value, which depends on the r
DN/DS. This is sufficient to destabilize the colony bounda
but not to produce branches. By adding a bacterial ‘‘dea
term toRN , Golding et al. @6# indicated that thick branche
could be obtained@the colony is then formed by active an
inactive ~or ‘‘dead’’! bacteria#. Earlier, Kitsunezaki@60# had
proposed a model with bacterial decay~or death! and non-
linear diffusion, which produced dendriticlike structures. H
03190
y

.
-
-

of
his

-
r
e-
-

k-
d
e
a

he
n

r-

f

n-

e

-

io

’’

simulations were performed on a random lattice, and it tu
out that randomness is essential in his model. We have
deed checked that by refining the mesh size, the instab
giving rise to fine structures on aregular lattice disappears
this was also noticed by Mimuraet al. @19#. Kawasakiet al.
@61# proposed to use a stochastic nonlinear diffusion coe
cient in the equation forN to account for agar inhomogene
ity. In this case, dendriticlike colony shapes can be rep
duced, even in the absence of the bacterial depletion t
introduced by Kitsunezaki or Goldinget al. More recently,
Mimura et al. @19# proposed a model that involves a piec
wise continuous death term and a~nonstochastic! nonlinear
piecewise continuous diffusion coefficient in the equation
N. This model captures a variety of colony shapes when
parameters are varied. As mentioned before, Goldinget al.
@6# introduced a model with lubricant, which can also repr
duce most of the colony shapes observed in the experime
To our knowledge, no rigorous analysis of the nature of
instability leading to branched colony shapes in these mo
has been performed, except in the simplest case@59#. It
would be extremely interesting to determine the exact r
played by the reaction and diffusion terms in the develo
ment of branched structures for more complex models
particular, in the presence of noise. We now present the
sults of a few numerical simulations of Eqs.~13! with reac-
tion terms and diffusion coefficients similar to some of t
models mentioned above. More precisely, we use reac
terms of the form

RN~N,W,S!5NS, RS~N,W,S!52NS,

RW~N,W,S!50,

and a stochastic nonlinear diffusion coefficientDN(N,W,S)
5D0

N(11s)NS, wheres is a random number with a trian
gular distribution of support@2r,r#, 0,r<1, as in Ref.
@61#. Randomness inDN represents inhomogeneities in th
agar@61#. Note thatDN vanishes when eitherN or Sare zero.
According to Ref.@61#, this reflects the fact that bacteri
move slowly whenN or Sare small. Variations ofDN with W
are neglected in the simulations below. As a conseque
the equation forW decouples from the equations forN andS
whenvchem50.

In order to avoid numerical instabilities, the reactio
terms on the right-hand sides of Eqs.~13! are set to zero ifN
is less than some cutoff value~set to 0.005 in the numeric
except for the simulations of Figs. 4 and 5, for which it
equal to 0.02!. Finally, we replace“S/S by “S/(S10.05) in
the expression forv to numerically keep this quantity finite
when S is small. Initial conditions are of the formN
50.71 exp@220(x21y2)#, S50.35, andW5W05const, as
was the case in Ref.@61#.

In dry media, i.e., whenW is small, a discussion similar to
that of Sec. IV B but for arbitrary values ofj1 andj2 indi-
cates that gradients ofW remain small. In other words,W is
almost constant and Eqs.~13! are thus very similar to clas
sical reaction-diffusion equations, such as those discusse
Ref. @61#. One therefore expects similar types of results,
6-10
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exemplified in Figs. 4 and 5, for whichW050.2. In Fig. 4,
g50, i.e.,vchem50. In Fig. 5,g50.0025 but the diffusion
coefficient ofS is smaller and the diffusion coefficient ofW
is larger than for the simulation of Fig. 4. All paramet
values are given in the figure captions. WhenW is large,
water is strongly influenced by the dynamics ofN and S.
Figures 6 and 7 show the results of two simulations of E
~13! and ~14! with W051, for different values ofg and
different values of the diffusion coefficient ofS. The colony
shown in Fig. 7 is the same as that shown in Fig. 3, but
later time.

It is obvious from these simulations that very differe
colony shapes can be obtained from the advection-reac
diffusion model~13!,~14!. In both Figs. 5 and 6,N has a peak
in the center of the colony. This is due to the fact that
these simulations, the ratioDN/DS is relatively large~i.e., of
order 1 or larger!: nutrients diffuse slowly and, in region
whereN is initially large, S is depleted beforeN can grow
further.

B. Full hydrodynamic model

We now turn to the full hydrodynamic model. We fir
consider the chemotacticlike limit of Eqs.~12! and then il-
lustrate the role of the small-scale forcingFg produced by
collective bacterial motions. These simulations all assu

FIG. 4. Numerical solution of Eqs.~13! and ~14! at t52700.
The parameters areDN50.005(11s)NS, where s is a random
number with a triangular distribution of support@21,1#, RS5
2NS, RN5NS, RW50, k051, g50, DS50.01, and DW

50.005. Left: profiles ofN, S, andW as functions of position, along
a horizontal line going through the middle of the colony. Rig
gray-scale picture ofN as a function of space.

FIG. 5. Numerical solution of Eqs.~13! and ~14! at t51700.
The parameters areDN50.005(11s)NS, where s is a random
number with a triangular distribution of support@21,1#, RS5
2NS, RN5NS, RW50, k051, g50.000 25, DS50.005, and
DW50.1. Left: profiles ofN, S, and W as functions of position,
along a horizontal line going through the middle of the colo
Right: gray-scale picture ofN as a function of space.
03190
s.
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that the fluid is Newtonian. We also setl5m/3, i.e., we
neglect the bulk viscosity of the bacterial fluid. We first co
sider the chemotacticlike limit and compare the velocityv
obtained from Eq.~11! to the velocityvchem defined in Sec.
IV. Initial conditions forN, S, andW are the same as for th
simulations of the advection-reaction-diffusion model. T
cutoff on the reaction terms is set to 0.002 in simulations
Sec. V B 1 and to 0.015 in Sec. V B 2.

1. Chemotacticlike limit

We can use the full hydrodynamic model to test t
chemotactic limit discussed in Sec. IV. We cannot set to z
the diffusion coefficients in the equations forvC andS, since
this would lead to numerical instabilities. Moreover, decre
ing these diffusion coefficients leads to an increase in
gradients ofN and S so that the corresponding diffusiv
terms are never negligible. We thus expect the chemota
limit to be singular.

In the absence of forcing in Eq.~11!, the velocity fieldv
remains close tovC as long as the latter is not too large~i.e.,
as long as the nonlinear or viscous terms do not drive
equation forvH). As discussed in Sec. IV, if the reactio
terms always dominate the dynamics ofS, and if the time
derivative ofN/r is small, one expects

.

FIG. 6. Numerical solution of Eqs.~13! and~14! at t5300. The
parameters areDN50.05(11s)NS, wheres is a random number
with a triangular distribution of support@21,1#, RS52NS, RN

5NS, RW50, k051, g50.0025, DS50.01, and DW50.005.
Left: profiles ofN, S, andW as functions of position, along a hori
zontal line going through the middle of the colony. Right: gra
scale picture ofN as a function of space.

FIG. 7. Numerical solution of Eqs.~13! and~14! at t5400. The
parameters areDN50.05(11s)NS, wheres is a random number
with a triangular distribution of support@21,1#, RS52NS, RN

5NS, RW50, k051, g50.01, DS50.1, andDW50.005. Left:
profiles ofN, S, andW as functions of position, along a horizonta
line going through the middle of the colony. Right: gray-scale p
ture of N as a function of space.
6-11
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v.
2g

k0

N

r

“S

f ~S!
5vchem.

Numerical simulations of the full model~in the case of a
Newtonian fluid! show that the relative differenceE
5max(uuv2vchemuu)/max(uuvuu) remains of the order of a few
percent only for a short period of time. Qualitative agre
ment however is fairly good, even at longer times. Figur
shows the results of a numerical simulation of Eqs.~12!. The
parameters are chosen such thatm ~andl5m/3) are small:
this keepsv close tovC, as discussed above;W is small, so
that (]/]t)(N/r)52(]/]t)(W/r)!1; DS is small enough,
but not too small, in order to haveRS5NS.DS¹2S, at least
in the beginning of the simulation;F50. The errorE, plot-
ted as a function of time in the top panel of Fig. 8, increa
rather rapidly and saturates to a value of about 60%t

FIG. 8. Numerical solution of Eqs.~12!, in the absence of forc-
ing. The parameters areDN50.005(11s)NS, wheres is a ran-
dom number with a triangular distribution of support@21,1#, RS

52NS, RN5NS, RW50, k051, DS50.005, DW50.1, m
50.0002, W050.02, and g51/900. Top: error E5max(uuv
2vchemuu)/max(uuvuu) as a function of time. Middle: profiles of the
x components ofvchem ~solid line! and v ~dashed line! at t55.
Bottom: same as above but fort520. Position is measured in gri
points ~512 grid points correspond to a length of 8p).
03190
-
8

s

.15. The middle panel of Fig. 8 shows cross sections of
x components of the two velocity fieldsv and vchem at t
55, whenE is less than 20%. The agreement between
two profiles is quite good. Att520 ~bottom panel of Fig. 8!,
when E.60%, the agreement between the two profiles
only qualitative. At later times, the diffusion terms have b
come too large for the chemotactic limit to be significant.
summarize, in the absence of forcing in the hydrodynam
equation, the advection-reaction-diffusion model~13!,~14! is
expected to and does only give a qualitative description
the colony dynamics.

2. Small-scale forcing

In the presence of a small-scale forcingFgÞ0, fine-scale
structures develop within the colony and on its boundary
shown in Fig. 9, which is a gray-scale rendering of the b
terial densityN as a function of space for a Reynolds numb
Re.0.15. In this simulation,h50, Fe50, andFg is of the
form Fg5Nrf, wheref is a white noise in time whose Fou
rier spectrum has Gaussian-distributed random phases a
supported on an annulus of width 5 and radius 11.25. T
field f is also such that“•f50. The small-scale forcing
therefore vanishes outside the colony and increases with
amount of water present in the system~since it is assumed
that bacteria are more active in wetter regions of the colon!.
We also show in Fig. 9 an enlargement of the middle-rig
part of the colony, with the velocity fieldv superimposed.
Vortices and jets are visible within the colony. Their lifetim
is longer than the time scale of the forcing~that is they per-
sist over many time steps!. A typical vortex size is about
twice that of the small-scale forcing; the length of the jets
up to three times the diameter of a vortex. The dynamic
dominated by hydrodynamic motions: the chemotactic p
of the velocity field (uuvCuu) is eight times as small as th
hydrodynamic part (uuvHuu). The solenoidal part ofvC is
about a thousand times as small as its compressible part.
is due to the fact thatW varies slowly throughout the colony
Equation~10! indeed shows that wheng is constant, the curl
of vC can only grow through a term proportional to“W
3“N. Because vortices and jets are larger than the siz
the imposed forcing, we believe that the mechanism at p
here is that of transfer of energy from small to larger sca
However, no complete inverse cascade is clearly obser
Our results are nevertheless very promising, given that
merical constraints prevent us from imposing a realis
separation of scales between the forcing and the size of
colony.

The small-scale forcing affects the speed at which
colony boundary moves. Our numerical simulations inde
show that colonies grow faster when the Reynolds numbe
increased. Moreover, the vortices and jets located near
colony boundary act like a random noise that destabilizes
interface. We checked that very similar colony patterns
obtained even in the absence of noise in the bacterial di
sion coefficient.

VI. CONCLUSIONS

We have proposed a hydrodynamic model that give
general description of bacterial colonies growing on soft a
6-12
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HYDRODYNAMICS OF BACTERIAL COLONIES: A MODEL PHYSICAL REVIEW E67, 031906 ~2003!
plates. In particular, a single set of equations captures mo
insideas well asat the boundaryof the colony. When bac-
terial collisions dominate, these equations formally reduce
a set of advection-reaction-diffusion equations. This
proach thus provides a framework in which macrosco
reaction-diffusion models of bacterial colonies are justifi
on the basis of hydrodynamic considerations. The advect
reaction-diffusion equations we obtain treat the amount
water in the colony as one of their dependent variables. T
allows us to describe colonies that are drier in the inte

FIG. 9. Numerical simulation of Eqs.~12!, in the presence of
forcing. The parameters areDN50.005(11s)NS, where s is a
random number with a triangular distribution of support@21,1#,
RS52NS, RN5NS, RW50, k051, DS50.005, DW50.1, m
50.01, W051, andg50.000 044. Top: gray-scale picture ofN as
a function of space att52000. Bottom: velocity fieldv in the
middle-right part of the colony. The length of each arrow is prop
tional to the amplitude ofv. The maximum ofuuvuu is 0.01.
03190
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than at the boundary, in agreement with experimental ob
vations. Finally, numerical simulations of the full hydrod
namic equations illustrate that our model is able to reprod
interesting colony shapes together with nontrivial dynam
inside the colony. In particular, collective behaviors such
whirls and jets can be generated by a small-scale rand
forcing. The basic principle behind the existence of the
coherent structures is the transfer of energy from smal
large scales in the equation describing the dynamics of
two-dimensional velocity field of the complex fluid. Thi
phenomenon is analogous to the inverse cascade observ
two-dimensional turbulence. This description implies th
vortices and jets are characteristic of bacterial systems c
fined to quasi-two-dimensional domains, as is the case in
experiments of Refs.@26,27#. It is different from the sponta-
neous organization observed in the model of self-prope
particles proposed by Vicseket al. @36#, where collective be-
haviors occur regardless of the dimension of the system

We believe that this paper represents a first step towa
the understanding of complex dynamics in bacterial colon
The main characteristic of our model is that conservat
equations for the bacterial, nutrient, and water concentrat
are coupled to a single hydrodynamic equation for the vel
ity field of a complex fluid which consists of bacteria an
water. Equations~12! are completely general and differen
types of bacteria will lead to different expressions for t
reaction terms, the stress tensors, and the diffusion co
cients. Future work will deal with an experimental investig
tion of the rheologic and hydrodynamic properties of t
bacterial fluid used in Ref.@26#, an analysis of the reaction
diffusion model~13!, and a detailed investigation of the cou
pling between colony shape and hydrodynamics, as
scribed by Eqs.~12!.
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APPENDIX A: HORIZONTAL VELOCITY PROFILE

In this appendix, we solve Brinkman’s equation~1!,

052“p1m* ¹2vW2
m

k
vW,

for a velocity field of the formvW5 f (z) x̂, wherez is the
vertical coordinate pointing upward andx̂ is a unit vector in
the horizontal directionx. We assume stress-free bounda
conditionsd f /dz50 at z50 and no-slip boundary condi
tions f (z)50 at z52H. Moreover, in order to mimic a
situation where fluid motion is triggered by bacteria swim

-
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ming near the top of the agar plate, we suppose that
pressure gradient2“p is constant in a region of thicknessh
near the surface. These hypotheses only provide a cartoo
the real system, but they are sufficient to give an estimat
the vertical variation of the horizontal velocity field. Forz
between2h and 0, the solution of

052
1

m*
“p1

d2f

dz2
x̂2a2f x̂, a25

m

km*

with “p/m* 5Cx̂ andd f /dz50 at z50 is

f ~z!52
C

a2
1C1cosh~az!,
y
is
ld

t

xi-

pt

ua
e

co
u

03190
e

of
of

where the constantC1 is to be determined. Similarly, forz
between2H and2h, the solution of

05
d2f

dz2
2a2f ,

with f (2H)50 is

f ~z!5
C2sinh@a~z1H !#

cosh~aH !
,

whereC2 is a yet-to-be-determined constant. The two co
stantsC1 andC2 may be obtained by imposing the contin
ity of the global solutionf and of its derivative atz52h. We
then have
f ~z!55 2
C

a2 S 12
cosh~az!cosh@a~h2H !#

cosh~aH ! D if 2h<z<0

2
C sinh~ah!sinh@a~z1H !#

a2cosh~aH !
if 2H<z<2h.

~A1!
,

Figure 10 shows a plot of this function fora51, H510,
h51, andC521. It illustrates the behavior of the velocit
field in the region where the pressure gradient is nonvan
ing, as well as the exponential decay of the velocity fie
outside of the layer of thicknessh.

We can use the solution~A1! to calculate the coefficien
h-

z5^ f 2&/^ f &2, which appears in Eqs.~8!, where^•& indicates
averaging over@2h,0#. The formula is a little complicated
but simplifies in the limit asaH→`. Since the actual value
of H is irrelevant as long as it is much larger thanh, taking
this limit is legitimate. We then get
z5
ah

2

2114~21ah!exp~2ah!1~8ah27!exp~4ah!

112~2ah21!exp~2ah!1~2ah21!2exp~4ah!
.

an
s-
r-
ast
he
ds,

e.
e

A plot of this coefficient as a function ofa h ~not shown!
reveals thatz is always between 1 and 1.022, with a ma
mum reached fora h.2.9. Therefore, one can takez.1 as
long as vertical averaging is performed over a layer of de
h, that is, over the region where bacteria are active.

APPENDIX B: TWO-PHASE FLUID APPROACH
TO THE HYDRODYNAMIC EQUATIONS

In this appendix, we discuss how the hydrodynamic eq
tions for the mixture of bacteria and water may be obtain
from a two-phase fluid approach.

1. General setup

We start by assuming that bacteria and water can be
sidered as two interpenetrating interacting contin
h

-
d

n-
a

@38,62,63# and then discuss under which conditions one c
simplify the resulting model. The two-fluid description a
sumes that it is legitimate to talk of ‘‘bacterial fluid pa
ticles,’’ which in turn supposes that one can envision, at le
conceptually, a fluid made of bacteria. We first write t
continuity and momentum equations for each of the flui
an approach similar to that developed in Ref.@64# for multi-
component reacting systems. Recall that we denote byW the
mass of water and byN the mass of bacteria per unit volum
Let vW and vN be the velocity fields for the water and th
bacteria, respectively. The continuity equations forW andN
read

]W

]t
1“•~WvW!5RW1“•~DW

“W!, ~B1!
6-14
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]N

]t
1“•~NvN!5RN , ~B2!

whereRN andRW are defined in the main part of the text an
“•(DW

“W) in the equation for the concentration of wat
describes dispersion@45# in the porous medium. To get a
intuitive understanding of what dispersion does, assume
the bottom of the agar plate is wetter than its top. We th
expect water to move upward by capillarity. At a macr
scopic level, water will appear to ‘‘diffuse’’ towards the to
of the plate. Similarly, horizontal variations in the concent
tion of water in the agar will lead to water displaceme
across the plate. The dispersion coefficientDW is propor-
tional to the gradient with respect toW of the capillary pres-
sure and is, in general, a power law function ofW @65#. It
should not be confused with the molecular diffusivity, no
malized by the porosity of the medium, which typically a
fects the concentration field of a fluid miscible in a giv
solvent. The inclusion of dispersion in the continuity equ
tion for W may be justified as follows. In the absence
bacteria and if the presence of air in the porous medium
taken into account, one may assume that the velocity fie
of air and water inside the agar follow Darcy’s equation fo
two-phase fluid@45#. The water velocity field can then b
expressed in terms of the velocity field of the air-water m
ture and of the capillary pressure. When substituted into
continuity equation for water, this leads to an advection te
@of the form“•(WvW) as above, but wherevW now stands
for the velocity field of the air-water mixture# corrected by a
dispersion term@as on the right-hand side of Eq.~B1!#, pro-
portional to the gradient of the capillary pressure@45#. When
bacteria are present, Darcy’s equation no longer describe
dynamics ofvW, since viscous as well as inertial effects ha
to be taken into account. In order to keep our model
simple as possible, we include dispersion in the continu
equation forW instead of adding capillary pressure terms
the equation forvW ~or instead of introducing a third velocit
field for the air in the porous medium!. Given the large as-
pect ratio of the plate, the water concentrationW will be
considered homogeneous in the vertical direction.

If we now definer5N1W, we obtain the following
equation from Eqs.~B1! and ~B2!:

FIG. 10. Plot of the solution given by Eq.~A1! with a51, H
510, h51, andC521. The dashed line is the line of equatio
z52h, which separates the region near the surface (z50) where
the pressure gradient is finite from the region where no pres
gradient is imposed.
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]t
1“•~WvW1NvN!5RN1RW1“•~DW

“W!.

This equation can then be written as a continuity equation
r:

]r

]t
1“•~rv !5RN1RW1“•~DW

“W!, ~B3!

where the velocity fieldv is defined by

v5
WvW1NvN

W1N
5

1

r
~WvW1NvN!. ~B4!

The quantityr is the density of the mixture or two-phas
fluid @38,63# made of bacteria and water. If this mixture ca
be considered as a single fluid, then its velocity field is giv
by v, which is the mass-weighted average of the water a
bacterial velocity fields.

The equations for the conservation of linear momentu3

for water and bacteria read

W
]

]t
vW1W~vW

•“ !vW5“•TW1FW, ~B5!

N
]

]t
vN1N~vN

•“ !vN5“•TN1FN, ~B6!

whereTW andTN are the stress tensors for water and bac
ria, respectively, and the external forces per unit volumeFW

andFN can be written as

FW5F i
W1Fs

W1Fe
W ,

FN5F i
N1Fs

N1Fg
N .

Here,F i
W52F i

N describes internal interactions between ba
teria and water,Fs

W and Fs
N describe interactions with the

substrate@according to Brinkman’s theory, these forces a
damping forces, as in Eq.~1!#, Fe

W and Fg
N correspond to

changes in linear momentum due to external forces~such as
gravity! and to bacterial activity, respectively. The forceFg

N

3These equations express Newton’s law for a given ensembl
‘‘particles’’ which move along with the fluid~that is, Wdt and
Ndt, wheredt is a volume element, are kept constant! @66#. As a
consequence, mass fluxes do not give rise to force terms on
right-hand side of the momentum equations@63#. Such equations
could also be obtained by writing that linear momentum is co
served for a volume of fluid moving along with the flow. The co
responding balance equation would then contain terms describi
change in momentum due to mass increase or due to mass fl
These terms would then cancel out when the balance equatio
combined with the corresponding continuity equation to give
equation like~B5! or ~B6!.

re
6-15
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describes subgrid scale dynamics in the bacterial fluid an
thus different from F i

N52F i
W . Each of the momentum

equations may be rewritten as an equation for the local c
servation of linear momentum. For instance, by combin
Eqs.~B2! and ~B6!, one obtains

]

]t
~NvN!1“•~NvNvN!5“•TN1RNvN1F i

N1Fs
N1Fg

N ,

~B7!

where“•(NvNvN) is a vector whosej th component in Car-
tesian coordinates is“•(NvNv j

N) andv j
N is the j th compo-

nent ofvN. The fact that bacteria are living organisms giv
rise to changes in linear momentum first because the ma
a fluid particle changes as it is advected by the fluid~term in
RNvN) and second because bacterial activity may, at the
drodynamic scale, appear as a small-scale forcing, whic
accounted for byFg

N .
Similarly, by combining Eqs.~B1! and ~B5!, one gets an

equation for the local conservation of linear momentum
water, which reads

]

]t
~WvW!1“•~WvWvW!5“•TW1RWvW1FW

1vW
“•~DW

“W!. ~B8!

By adding Eqs.~B7! and ~B8!, we get

]

]t
~rv !1“•~rvv !5“•T1F̃, ~B9!

where

T5TW1TN2NvN~vN2v !2WvW~vW2v !

and

F̃5FW1FN1RNvN1RWvW1vW
“•~DW

“W!

5Fs
W1Fs

N1Fe
W1Fg

N1RNvN1RWvW1vW
“•~DW

“W!

5Fs1F̃e1F̃g .

Here,Fs5Fs
W1Fs

N describes interaction of the fluid with th

substrate,F̃e5Fe
W1RWvW1vW

“•(DW
“W) corresponds to

changes in linear momentum due to external forces
transfer of water between the agar plate, the colony, and
surrounding air, andF̃g5Fg

N1RNvN accounts for changes i
linear momentum due to bacterial growth and bacterial
tivity. The tensorT is the sum of the stress tensorsTN and
TW of bacteria and water, corrected by terms involving ea
velocity field vN and vW, as well as their mass-weighte
averagev.

A closed set of equations for our system consists, for
stance, of the continuity equations~2! and ~B3!, of the mo-
mentum equation~B9!, and of the continuity and momentum
equations for water~B1! and~B5!, together with appropriate
03190
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boundary conditions and expressions for the stress ten
TW and TN. The difficulty with such a description is that
requires some knowledge of the internal forceF i

W52F i
N ,

which describes interactions between bacteria and water.
next step is therefore to reduce this system to coupled e
tions which only involvev, rather thanvN and vW. More
precisely, given the relatively high bacterial density in t
system, and given the fact that no motion is observed in
absence of bacteria or if bacteria are dead, it is legitimat
assume that most of the dynamics is due to the bacteria
the hydrodynamic scale, bacteria and water move as a si
fluid, so that one can expect (vN2vW)2 to be small, say,
vW2vN5em, whereuumuu5O(uuvNuu) ande!1. The mean
velocity field v is given byv5vN1edm and the velocity
terms in the expression for the tensorT read

NvN~vN2v !1WvW~vW2v !5r d~12d!e2mm.

They are therefore negligible when compared tor(vN)2

5O(rv2). When combined to the continuity equation~B3!,
the momentum equation~B9! becomes Eq.~5!,

r
]v
]t

1r~v•“ !v5“•T1F,

where

F5F̃2vRN2vRW2v“•~“DWW!

5Fs1Fe
W1Fg

N1RN~vN2v !1RW~vW2v !

1~vW2v !“•~DW
“W!

5Fs1Fe1Fg

and Fe5Fe
W1RW(vW2v)1(vW2v)“•(DW

“W),
Fg5Fg

N1RN(vN2v). With the assumptions discusse
above, we can replace“•T by “•(TW1TN), and neglect the
last terms in the expressions forFe and Fg . The forceFs

5Fs
W1Fs

N is typically of the form Fs52aWvW2aNvN,
whereaN, W are friction coefficients that depend on the ela
tic properties of the two fluids and on the geometry of t
porous medium@43#. This force can then be rewritten as

Fs52aW~vN1em!2aNvN52~aW1aN!v1O~em!

and can therefore be approximated byFs.2av, wherea
describes the interaction of the fluid with the porous m
dium. If we taked as a parameter, Eqs.~2!, ~B3!, and ~5!,
with W5dr, N5(12d)r, and appropriate boundary cond
tions and expressions forTN andTW, form a closed system
for the velocity fieldv, the densityr, and the nutrient con-
centration fieldS. They are the hydrodynamic equations for
single bacterial fluid that consists of densely packed bact
and water. We expect them to be valid within the colony, i.
away from its boundary.

Near the boundary of the colony,d experiences large
variations and, therefore, cannot be treated as a param
6-16
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An equation for this quantity should thus be included in t
model. It turns out that it is easier to useN andW as depen-
dent variables. The continuity equation~B2! can then be re-
written as a reaction-diffusion equation forN,

]N

]t
1“•~Nv !5RN1“•@N~v2vN!#5RN2“• jN,

where jN5N(vN2v)52eNdm is the flux of bacteria
through a line advected at the mean velocityv. With jN5
2DN

“N, we obtain Eq.~3!. Note that sincejN5N(vN

2v)5WN(vN2vW)/r, it is reasonable to assume th
uuDNuu is proportional toN and W. Also note that higher-
order terms may be included in Eqs.~7!, provided a ‘‘closure
relation’’ for vW2vN is added to the model.

2. Case of a Newtonian fluid

The stress tensorsTW andTN are written as

TW52pWI 1tW, TN52pNI 1tN,

where the isotropic partspW and pN are the water and bac
terial pressures, andtW andtN are strain-related stresses. W
now express the stress tensorstW and tN in terms ofv, N,
and W, in the case where bacteria behave as a Newton
fluid. We thus assume that
,

,

ica

oc

ys

03190
n

“•tW5mW¹2vW

“•tN5mN¹2vN1lN
“~“•vN!, ~B10!

wheremW andmN are the water and bacterial viscosities, a
lN is a second viscosity coefficient for the bacteria~which
form a compressible fluid!. SincevN andvW are comparable
and if we consider thatmW.mN, we can simplify the vis-
cous terms, which become

mW¹2vW1mN¹2vN1lN
“~“•vN!

5~mW1mN!¹2v1¹2FNmW2WmN

N1W
~vW2vN!G

1lN
“F“•S v1

W

N1W
~vN2vW! D G

5~mW1mN!¹2v1¹2@$~12d!mW2dmN%em#

1lN
“@“•~v2dem!#

.m¹2v1l“~“•v !,

wherem5mW1mN andl5lN. Note that the expression fo
m is different from the viscosity of a dilute suspension, f
which m is a function of the volume fraction of the particu
late phase@29#. This is because in a two-phase fluid mod
one does not distinguish between a solvent and a solute
.
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